Abstract:This paper addresses the challenge of audio-visual single-microphone speech separation and enhancement in the presence of real-world environmental noise. Our approach is based on generative inverse sampling, where we model clean speech and ambient noise with dedicated diffusion priors and jointly leverage them to recover all underlying sources. To achieve this, we reformulate a recent inverse sampler to match our setting. We evaluate on mixtures of 1, 2, and 3 speakers with noise and show that, despite being entirely unsupervised, our method consistently outperforms leading supervised baselines in \ac{WER} across all conditions. We further extend our framework to handle off-screen speaker separation. Moreover, the high fidelity of the separated noise component makes it suitable for downstream acoustic scene detection. Demo page: https://ssnapsicml.github.io/ssnapsicml2026/




Abstract:Despite the many recent achievements in developing and deploying social robotics, there are still many underexplored environments and applications for which systematic evaluation of such systems by end-users is necessary. While several robotic platforms have been used in gerontological healthcare, the question of whether or not a social interactive robot with multi-modal conversational capabilities will be useful and accepted in real-life facilities is yet to be answered. This paper is an attempt to partially answer this question, via two waves of experiments with patients and companions in a day-care gerontological facility in Paris with a full-sized humanoid robot endowed with social and conversational interaction capabilities. The software architecture, developed during the H2020 SPRING project, together with the experimental protocol, allowed us to evaluate the acceptability (AES) and usability (SUS) with more than 60 end-users. Overall, the users are receptive to this technology, especially when the robot perception and action skills are robust to environmental clutter and flexible to handle a plethora of different interactions.