This paper addresses the challenge of audio-visual single-microphone speech separation and enhancement in the presence of real-world environmental noise. Our approach is based on generative inverse sampling, where we model clean speech and ambient noise with dedicated diffusion priors and jointly leverage them to recover all underlying sources. To achieve this, we reformulate a recent inverse sampler to match our setting. We evaluate on mixtures of 1, 2, and 3 speakers with noise and show that, despite being entirely unsupervised, our method consistently outperforms leading supervised baselines in \ac{WER} across all conditions. We further extend our framework to handle off-screen speaker separation. Moreover, the high fidelity of the separated noise component makes it suitable for downstream acoustic scene detection. Demo page: https://ssnapsicml.github.io/ssnapsicml2026/