Abstract:Parallel diffusion decoding can accelerate diffusion language model inference by unmasking multiple tokens per step, but aggressive parallelism often harms quality. Revocable decoding mitigates this by rechecking earlier tokens, yet we observe that existing verification schemes frequently trigger flip-flop oscillations, where tokens are remasked and later restored unchanged. This behaviour slows inference in two ways: remasking verified positions weakens the conditioning context for parallel drafting, and repeated remask cycles consume the revision budget with little net progress. We propose COVER (Cache Override Verification for Efficient Revision), which performs leave-one-out verification and stable drafting within a single forward pass. COVER constructs two attention views via KV cache override: selected seeds are masked for verification, while their cached key value states are injected for all other queries to preserve contextual information, with a closed form diagonal correction preventing self leakage at the seed positions. COVER further prioritises seeds using a stability aware score that balances uncertainty, downstream influence, and cache drift, and it adapts the number of verified seeds per step. Across benchmarks, COVER markedly reduces unnecessary revisions and yields faster decoding while preserving output quality.




Abstract:Long-context large language models (LLMs) inference is increasingly critical, motivating a number of studies devoted to alleviating the substantial storage and computational costs in such scenarios. Layer-wise skipping methods are promising optimizations but rarely explored in long-context inference. We observe that existing layer-wise skipping strategies have several limitations when applied in long-context inference, including the inability to adapt to model and context variability, disregard for sublayer significance, and inapplicability for the prefilling phase. This paper proposes \sysname, an adaptive sublayer skipping method specifically designed for long-context inference. \sysname adaptively identifies less important layers by leveraging on-the-fly similarity information, enables sublayer-wise skipping, and accelerates both the prefilling and decoding phases. The effectiveness of \sysname is demonstrated through extensive experiments on various long-context benchmarks and models, showcasing its superior inference performance over existing baselines.