Abstract:Reinforcement learning (RL) has enhanced the capabilities of large language models (LLMs) through reward-driven training. Nevertheless, this process can introduce excessively long responses, inflating inference latency and computational overhead. Prior length-control approaches typically rely on fixed heuristic reward shaping, which can misalign with the task objective and require brittle tuning. In this work, we propose LACONIC, a reinforcement learning method that enforces a target token budget during training. Specifically, we update policy models using an augmented objective that combines the task reward with a length-based cost. To balance brevity and task performance, the cost scale is adaptively adjusted throughout training. This yields robust length control while preserving task reward. We provide a theoretical guarantee that support the method. Across mathematical reasoning models and datasets, LACONIC preserves or improves pass@1 while reducing output length by over 50%. It maintains out-of-domain performance on general knowledge and multilingual benchmarks with 44% fewer tokens. Moreover, LACONIC integrates into standard RL-tuning with no inference changes and minimal deployment overhead.