Abstract:All-in-one image restoration aims to address diverse degradation types using a single unified model. Existing methods typically rely on degradation priors to guide restoration, yet often struggle to reconstruct content in severely degraded regions. Although recent works leverage semantic information to facilitate content generation, integrating it into the shallow layers of diffusion models often disrupts spatial structures (\emph{e.g.}, blurring artifacts). To address this issue, we propose a Triple-Prior Guided Diffusion (TPGDiff) network for unified image restoration. TPGDiff incorporates degradation priors throughout the diffusion trajectory, while introducing structural priors into shallow layers and semantic priors into deep layers, enabling hierarchical and complementary prior guidance for image reconstruction. Specifically, we leverage multi-source structural cues as structural priors to capture fine-grained details and guide shallow layers representations. To complement this design, we further develop a distillation-driven semantic extractor that yields robust semantic priors, ensuring reliable high-level guidance at deep layers even under severe degradations. Furthermore, a degradation extractor is employed to learn degradation-aware priors, enabling stage-adaptive control of the diffusion process across all timesteps. Extensive experiments on both single- and multi-degradation benchmarks demonstrate that TPGDiff achieves superior performance and generalization across diverse restoration scenarios. Our project page is: https://leoyjtu.github.io/tpgdiff-project.




Abstract:Pre-trained Latent Diffusion Models (LDMs) have recently shown strong perceptual priors for low-level vision tasks, making them a promising direction for multi-exposure High Dynamic Range (HDR) reconstruction. However, directly applying LDMs to HDR remains challenging due to: (1) limited dynamic-range representation caused by 8-bit latent compression, (2) high inference cost from multi-step denoising, and (3) content hallucination inherent to generative nature. To address these challenges, we introduce GMODiff, a gain map-driven one-step diffusion framework for multi-exposure HDR reconstruction. Instead of reconstructing full HDR content, we reformulate HDR reconstruction as a conditionally guided Gain Map (GM) estimation task, where the GM encodes the extended dynamic range while retaining the same bit depth as LDR images. We initialize the denoising process from an informative regression-based estimate rather than pure noise, enabling the model to generate high-quality GMs in a single denoising step. Furthermore, recognizing that regression-based models excel in content fidelity while LDMs favor perceptual quality, we leverage regression priors to guide both the denoising process and latent decoding of the LDM, suppressing hallucinations while preserving structural accuracy. Extensive experiments demonstrate that our GMODiff performs favorably against several state-of-the-art methods and is 100 faster than previous LDM-based methods.