Abstract:Although large language models (LLMs) hold significant promise in psychotherapy, their direct application in patient-facing scenarios raises ethical and safety concerns. Therefore, this work shifts towards developing an LLM as a supervisor to train real therapists. In addition to the privacy of clinical therapist training data, a fundamental contradiction complicates the training of therapeutic behaviors: clear feedback standards are necessary to ensure a controlled training system, yet there is no absolute "gold standard" for appropriate therapeutic behaviors in practice. In contrast, many common therapeutic mistakes are universal and identifiable, making them effective triggers for targeted feedback that can serve as clearer evidence. Motivated by this, we create a novel therapist-training paradigm: (1) guidelines for mistaken behaviors and targeted correction strategies are first established as standards; (2) a human-in-the-loop dialogue-feedback dataset is then constructed, where a mistake-prone agent intentionally makes standard mistakes during interviews naturally, and a supervisor agent locates and identifies mistakes and provides targeted feedback; (3) after fine-tuning on this dataset, the final supervisor model is provided for real therapist training. The detailed experimental results of automated, human and downstream assessments demonstrate that models fine-tuned on our dataset MATE, can provide high-quality feedback according to the clinical guideline, showing significant potential for the therapist training scenario.
Abstract:Electrocardiogram (ECG) signal analysis represents a pivotal technique in the diagnosis of cardiovascular diseases. Although transformer-based models have made significant progress in ECG classification, they exhibit inefficiencies in the inference phase. The issue is primarily attributable to the secondary computational complexity of Transformer's self-attention mechanism. particularly when processing lengthy sequences. To address this issue, we propose a novel model, ECGMamba, which employs a bidirectional state-space model (BiSSM) to enhance classification efficiency. ECGMamba is based on the innovative Mamba-based block, which incorporates a range of time series modeling techniques to enhance performance while maintaining the efficiency of inference. The experimental results on two publicly available ECG datasets demonstrate that ECGMamba effectively balances the effectiveness and efficiency of classification, achieving competitive performance. This study not only contributes to the body of knowledge in the field of ECG classification but also provides a new research path for efficient and accurate ECG signal analysis. This is of guiding significance for the development of diagnostic models for cardiovascular diseases.