Abstract:With ever-increasing data volumes, it is essential to develop automated approaches for identifying nanoscale defects in transmission electron microscopy (TEM) images. However, compared to features in conventional photographs, nanoscale defects in TEM images exhibit far greater variation due to the complex contrast mechanisms and intricate defect structures. These challenges often result in much less labeled data and higher rates of annotation errors, posing significant obstacles to improving machine learning model performance for TEM image analysis. To address these limitations, we examined transfer learning by leveraging large, pre-trained models used for natural images. We demonstrated that by using the pre-trained encoder and L2-regularization, semantically complex features are ignored in favor of simpler, more reliable cues, substantially improving the model performance. However, this improvement cannot be captured by conventional evaluation metrics such as F1-score, which can be skewed by human annotation errors treated as ground truth. Instead, we introduced novel evaluation metrics that are independent of the annotation accuracy. Using grain boundary detection in UO2 TEM images as a case study, we found that our approach led to a 57% improvement in defect detection rate, which is a robust and holistic measure of model performance on the TEM dataset used in this work. Finally, we showed that model self-confidence is only achieved through transfer learning and fine-tuning of very deep layers.
Abstract:Real-world multimodal misinformation often arises from mixed forgery sources, requiring dynamic reasoning and adaptive verification. However, existing methods mainly rely on static pipelines and limited tool usage, limiting their ability to handle such complexity and diversity. To address this challenge, we propose T2Agent, a novel misinformation detection agent that incorporates an extensible toolkit with Monte Carlo Tree Search (MCTS). The toolkit consists of modular tools such as web search, forgery detection, and consistency analysis. Each tool is described using standardized templates, enabling seamless integration and future expansion. To avoid inefficiency from using all tools simultaneously, a Bayesian optimization-based selector is proposed to identify a task-relevant subset. This subset then serves as the action space for MCTS to dynamically collect evidence and perform multi-source verification. To better align MCTS with the multi-source nature of misinformation detection, T2Agent extends traditional MCTS with multi-source verification, which decomposes the task into coordinated subtasks targeting different forgery sources. A dual reward mechanism containing a reasoning trajectory score and a confidence score is further proposed to encourage a balance between exploration across mixed forgery sources and exploitation for more reliable evidence. We conduct ablation studies to confirm the effectiveness of the tree search mechanism and tool usage. Extensive experiments further show that T2Agent consistently outperforms existing baselines on challenging mixed-source multimodal misinformation benchmarks, demonstrating its strong potential as a training-free approach for enhancing detection accuracy. The code will be released.