Abstract:Accurately reconstructing continuous flow fields from sparse or indirect measurements remains an open challenge, as existing techniques often suffer from oversmoothing artifacts, reliance on heterogeneous architectures, and the computational burden of enforcing physics-informed losses in implicit neural representations (INRs). In this paper, we introduce a novel flow field reconstruction framework based on divergence-free kernels (DFKs), which inherently enforce incompressibility while capturing fine structures without relying on hierarchical or heterogeneous representations. Through qualitative analysis and quantitative ablation studies, we identify the matrix-valued radial basis functions derived from Wendland's $\mathcal{C}^4$ polynomial (DFKs-Wen4) as the optimal form of analytically divergence-free approximation for velocity fields, owing to their favorable numerical properties, including compact support, positive definiteness, and second-order differentiablility. Experiments across various reconstruction tasks, spanning data compression, inpainting, super-resolution, and time-continuous flow inference, has demonstrated that DFKs-Wen4 outperform INRs and other divergence-free representations in both reconstruction accuracy and computational efficiency while requiring the fewest trainable parameters.
Abstract:Predicting in-hospital mortality for intensive care unit (ICU) patients is key to final clinical outcomes. AI has shown advantaged accuracy but suffers from the lack of explainability. To address this issue, this paper proposes an eXplainable Multimodal Mortality Predictor (X-MMP) approaching an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data. We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions. Furthermore, we introduce an explainable method, namely Layer-Wise Propagation to Transformer, as a proper extension of the LRP method to Transformers, producing explanations over multimodal inputs and revealing the salient features attributed to prediction. Moreover, the contribution of each modality to clinical outcomes can be visualized, assisting clinicians in understanding the reasoning behind decision-making. We construct a multimodal dataset based on MIMIC-III and MIMIC-III Waveform Database Matched Subset. Comprehensive experiments on benchmark datasets demonstrate that our proposed framework can achieve reasonable interpretation with competitive prediction accuracy. In particular, our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.