Abstract:Existing methods achieve high-quality facial appearance capture under controllable lighting, which increases capture cost and limits usability. We propose WildCap, a novel method for high-quality facial appearance capture from a smartphone video recorded in the wild. To disentangle high-quality reflectance from complex lighting effects in in-the-wild captures, we propose a novel hybrid inverse rendering framework. Specifically, we first apply a data-driven method, i.e., SwitchLight, to convert the captured images into more constrained conditions and then adopt model-based inverse rendering. However, unavoidable local artifacts in network predictions, such as shadow-baking, are non-physical and thus hinder accurate inverse rendering of lighting and material. To address this, we propose a novel texel grid lighting model to explain non-physical effects as clean albedo illuminated by local physical lighting. During optimization, we jointly sample a diffusion prior for reflectance maps and optimize the lighting, effectively resolving scale ambiguity between local lights and albedo. Our method achieves significantly better results than prior arts in the same capture setup, closing the quality gap between in-the-wild and controllable recordings by a large margin. Our code will be released \href{https://yxuhan.github.io/WildCap/index.html}{\textcolor{magenta}{here}}.




Abstract:Readily editable mesh blendshapes have been widely used in animation pipelines, while recent advancements in neural geometry and appearance representations have enabled high-quality inverse rendering. Building upon these observations, we introduce a novel technique that reconstructs mesh-based blendshape rigs from single or sparse multi-view videos, leveraging state-of-the-art neural inverse rendering. We begin by constructing a deformation representation that parameterizes vertex displacements into differential coordinates with tetrahedral connections, allowing for high-quality vertex deformation on high-resolution meshes. By constructing a set of semantic regulations in this representation, we achieve joint optimization of blendshapes and expression coefficients. Furthermore, to enable a user-friendly multi-view setup with unsynchronized cameras, we propose a neural regressor to model time-varying motion parameters. This approach implicitly considers the time difference across multiple cameras, enhancing the accuracy of motion modeling. Experiments demonstrate that, with the flexible input of single or sparse multi-view videos, we reconstruct personalized high-fidelity blendshapes. These blendshapes are both geometrically and semantically accurate, and they are compatible with industrial animation pipelines. Code and data will be released.