Abstract:Recent advances in large language models (LLMs) have enabled AI agents to autonomously generate scientific proposals, conduct experiments, author papers, and perform peer reviews. Yet this flood of AI-generated research content collides with a fragmented and largely closed publication ecosystem. Traditional journals and conferences rely on human peer review, making them difficult to scale and often reluctant to accept AI-generated research content; existing preprint servers (e.g. arXiv) lack rigorous quality-control mechanisms. Consequently, a significant amount of high-quality AI-generated research lacks appropriate venues for dissemination, hindering its potential to advance scientific progress. To address these challenges, we introduce aiXiv, a next-generation open-access platform for human and AI scientists. Its multi-agent architecture allows research proposals and papers to be submitted, reviewed, and iteratively refined by both human and AI scientists. It also provides API and MCP interfaces that enable seamless integration of heterogeneous human and AI scientists, creating a scalable and extensible ecosystem for autonomous scientific discovery. Through extensive experiments, we demonstrate that aiXiv is a reliable and robust platform that significantly enhances the quality of AI-generated research proposals and papers after iterative revising and reviewing on aiXiv. Our work lays the groundwork for a next-generation open-access ecosystem for AI scientists, accelerating the publication and dissemination of high-quality AI-generated research content. Code is available at https://github.com/aixiv-org. Website is available at https://forms.gle/DxQgCtXFsJ4paMtn8.




Abstract:Optical packet header recognition is an important signal processing task of optical communication networks. In this work, we propose an all-optical reservoir, consisting of integrated double-ring resonators (DRRs) as nodes, for fast and accurate optical packet header recognition. As the delay-bandwidth product (DBP) of the node is a key figure-of-merit in the reservoir, we adopt a deep reinforcement learning algorithm to maximize the DBPs for various types of DRRs, which has the advantage of full parameter space optimization and fast convergence speed. Intriguingly, the optimized DBPs of the DRRs in cascaded, parallel, and embedded configurations reach the same maximum value, which is believed to be the global maximum. Finally, 3-bit and 6-bit packet header recognition tasks are performed with the all-optical reservoir consisting of the optimized cascaded rings, which have greatly reduced chip size and the desired "flat-top" delay spectra. Using this optical computing scheme, word-error rates as low as 5*10-4 and 9*10-4 are achieved for 3-bit and 6-bit packet header recognition tasks, respectively, which are one order of magnitude better than the previously reported values.