Abstract:Critical questions are essential resources to provoke critical thinking when encountering an argumentative text. We present our system for the Critical Questions Generation (CQs-Gen) Shared Task at ArgMining 2025. Our approach leverages large language models (LLMs) with chain-of-thought prompting to generate critical questions guided by Walton's argumentation schemes. For each input intervention, we conversationally prompt LLMs to instantiate the corresponding argument scheme template to first obtain structured arguments, and then generate relevant critical questions. Following this, we rank all the available critical questions by prompting LLMs to select the top 3 most helpful questions based on the original intervention text. This combination of structured argumentation theory and step-by-step reasoning enables the generation of contextually relevant and diverse critical questions. Our pipeline achieves competitive performance in the final test set, showing its potential to foster critical thinking given argumentative text and detect missing or uninformed claims. Code available at \href{https://git.ecdf.ed.ac.uk/s2236454/DayDreamer-CQs-Gen}{DayDreamer}.
Abstract:Unsupervised domain adaptation leverages abundant labeled data from various source domains to generalize onto unlabeled target data. Prior research has primarily focused on learning domain-invariant features across the source and target domains. However, these methods often require training a model using source domain data, which is time-consuming and can limit model usage for applications with different source data. This paper introduces a simple framework that utilizes the impressive generalization capabilities of Large Language Models (LLMs) for target data annotation without the need of source model training, followed by a novel similarity-based knowledge distillation loss. Our extensive experiments on cross-domain text classification reveal that our framework achieves impressive performance, specifically, 2.44\% accuracy improvement when compared to the SOTA method.
Abstract:In response to the call for agent-based solutions that leverage the ever-increasing capabilities of the deep models' ecosystem, we introduce Hive -- a comprehensive solution for selecting appropriate models and subsequently planning a set of atomic actions to satisfy the end-users' instructions. Hive operates over sets of models and, upon receiving natural language instructions (i.e. user queries), schedules and executes explainable plans of atomic actions. These actions can involve one or more of the available models to achieve the overall task, while respecting end-users specific constraints. Notably, Hive handles tasks that involve multi-modal inputs and outputs, enabling it to handle complex, real-world queries. Our system is capable of planning complex chains of actions while guaranteeing explainability, using an LLM-based formal logic backbone empowered by PDDL operations. We introduce the MuSE benchmark in order to offer a comprehensive evaluation of the multi-modal capabilities of agent systems. Our findings show that our framework redefines the state-of-the-art for task selection, outperforming other competing systems that plan operations across multiple models while offering transparency guarantees while fully adhering to user constraints.
Abstract:Identifying and understanding user intents is a pivotal task for E-Commerce. Despite its popularity, intent understanding has not been consistently defined or accurately benchmarked. In this paper, we focus on predicative user intents as "how a customer uses a product", and pose intent understanding as a natural language reasoning task, independent of product ontologies. We identify two weaknesses of FolkScope, the SOTA E-Commerce Intent Knowledge Graph, that limit its capacity to reason about user intents and to recommend diverse useful products. Following these observations, we introduce a Product Recovery Benchmark including a novel evaluation framework and an example dataset. We further validate the above FolkScope weaknesses on this benchmark.