State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China
Abstract:In recent years, the success of large language models (LLMs) has driven the exploration of scaling laws in recommender systems. However, models that demonstrate scaling laws are actually challenging to deploy in industrial settings for modeling long sequences of user behaviors, due to the high computational complexity of the standard self-attention mechanism. Despite various sparse self-attention mechanisms proposed in other fields, they are not fully suited for recommendation scenarios. This is because user behaviors exhibit personalization and temporal characteristics: different users have distinct behavior patterns, and these patterns change over time, with data from these users differing significantly from data in other fields in terms of distribution. To address these challenges, we propose SparseCTR, an efficient and effective model specifically designed for long-term behaviors of users. To be precise, we first segment behavior sequences into chunks in a personalized manner to avoid separating continuous behaviors and enable parallel processing of sequences. Based on these chunks, we propose a three-branch sparse self-attention mechanism to jointly identify users' global interests, interest transitions, and short-term interests. Furthermore, we design a composite relative temporal encoding via learnable, head-specific bias coefficients, better capturing sequential and periodic relationships among user behaviors. Extensive experimental results show that SparseCTR not only improves efficiency but also outperforms state-of-the-art methods. More importantly, it exhibits an obvious scaling law phenomenon, maintaining performance improvements across three orders of magnitude in FLOPs. In online A/B testing, SparseCTR increased CTR by 1.72\% and CPM by 1.41\%. Our source code is available at https://github.com/laiweijiang/SparseCTR.
Abstract:Existing micro-video recommendation models exploit the interactions between users and micro-videos and/or multi-modal information of micro-videos to predict the next micro-video a user will watch, ignoring the information related to vloggers, i.e., the producers of micro-videos. However, in micro-video scenarios, vloggers play a significant role in user-video interactions, since vloggers generally focus on specific topics and users tend to follow the vloggers they are interested in. Therefore, in the paper, we propose a vlogger-augmented graph neural network model VA-GNN, which takes the effect of vloggers into consideration. Specifically, we construct a tripartite graph with users, micro-videos, and vloggers as nodes, capturing user preferences from different views, i.e., the video-view and the vlogger-view. Moreover, we conduct cross-view contrastive learning to keep the consistency between node embeddings from the two different views. Besides, when predicting the next user-video interaction, we adaptively combine the user preferences for a video itself and its vlogger. We conduct extensive experiments on two real-world datasets. The experimental results show that VA-GNN outperforms multiple existing GNN-based recommendation models.