Abstract:Hardware Trojans (HTs) remain a critical threat because learning-based detectors often overfit to narrow trigger/payload patterns and small, stylized benchmarks. We introduce TrojanGYM, an agentic, LLM-driven framework that automatically curates HT insertions to expose detector blind spots while preserving design correctness. Given high-level HT specifications, a suite of cooperating LLM agents (instantiated with GPT-4, LLaMA-3.3-70B, and Gemini-2.5Pro) proposes and refines RTL modifications that realize diverse triggers and payloads without impacting normal functionality. TrojanGYM implements a feedback-driven benchmark generation loop co-designed with HT detectors, in which constraint-aware syntactic checking and GNN-based HT detectors provide feedback that iteratively refines HT specifications and insertion strategies to better surface detector blind spots. We further propose Robust-GNN4TJ, a new implementation of the GNN4TJ with improved graph extraction, training robustness, and prediction reliability, especially on LLM-generated HT designs. On the most challenging TrojanGYM-generated benchmarks, Robust-GNN4TJ raises HT detection rates from 0% to 60% relative to a prior GNN-based detector. We instantiate TrojanGYM on SRAM, AES-128, and UART designs at RTL level, and show that it systematically produces diverse, functionally correct HTs that reach up to 83.33% evasion rates against modern GNN-based detectors, revealing robustness gaps that are not apparent when these detectors are evaluated solely on existing TrustHub-style benchmarks. Post peer-review, we will release all codes and artifacts.




Abstract:Prefix circuits are fundamental components in digital adders, widely used in digital systems due to their efficiency in calculating carry signals. Synthesizing prefix circuits with minimized area and delay is crucial for enhancing the performance of modern computing systems. Recently, large language models (LLMs) have demonstrated a surprising ability to perform text generation tasks. We propose PrefixLLM, that leverages LLMs for prefix circuit synthesis. PrefixLLM transforms the prefix circuit synthesis task into a structured text generation problem, termed the Structured Prefix Circuit Representation (SPCR), and introduces an iterative framework to automatically and accurately generate valid SPCRs. We further present a design space exploration (DSE) framework that uses LLMs to iteratively search for area and delay optimized prefix circuits. Compared to state-of-the-art, PrefixLLM can reduce the area by 3.70% under the same delay constraint. This work highlights the use of LLMs in the synthesis of arithmetic circuits, which can be transformed into the structured text generation.