Abstract:Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) is a key technique used in military applications like remote-sensing image recognition. Vision Transformers (ViTs) are the current state-of-the-art in various computer vision applications, outperforming their CNN counterparts. However, using ViTs for SAR ATR applications is challenging due to (1) standard ViTs require extensive training data to generalize well due to their low locality; the standard SAR datasets, however, have a limited number of labeled training data which reduces the learning capability of ViTs; (2) ViTs have a high parameter count and are computation intensive which makes their deployment on resource-constrained SAR platforms difficult. In this work, we develop a lightweight ViT model that can be trained directly on small datasets without any pre-training by utilizing the Shifted Patch Tokenization (SPT) and Locality Self-Attention (LSA) modules. We directly train this model on SAR datasets which have limited training samples to evaluate its effectiveness for SAR ATR applications. We evaluate our proposed model, that we call VTR (ViT for SAR ATR), on three widely used SAR datasets: MSTAR, SynthWakeSAR, and GBSAR. Further, we propose a novel FPGA accelerator for VTR, in order to enable deployment for real-time SAR ATR applications.
Abstract:Deep Learning (DL) Models for Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR), while delivering improved performance, have been shown to be quite vulnerable to adversarial attacks. Existing works improve robustness by training models on adversarial samples. However, by focusing mostly on attacks that manipulate images randomly, they neglect the real-world feasibility of such attacks. In this paper, we propose FACTUAL, a novel Contrastive Learning framework for Adversarial Training and robust SAR classification. FACTUAL consists of two components: (1) Differing from existing works, a novel perturbation scheme that incorporates realistic physical adversarial attacks (such as OTSA) to build a supervised adversarial pre-training network. This network utilizes class labels for clustering clean and perturbed images together into a more informative feature space. (2) A linear classifier cascaded after the encoder to use the computed representations to predict the target labels. By pre-training and fine-tuning our model on both clean and adversarial samples, we show that our model achieves high prediction accuracy on both cases. Our model achieves 99.7% accuracy on clean samples, and 89.6% on perturbed samples, both outperforming previous state-of-the-art methods.
Abstract:Adversarial attacks have demonstrated the vulnerability of Machine Learning (ML) image classifiers in Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) systems. An adversarial attack can deceive the classifier into making incorrect predictions by perturbing the input SAR images, for example, with a few scatterers attached to the on-ground objects. Therefore, it is critical to develop robust SAR ATR systems that can detect potential adversarial attacks by leveraging the inherent uncertainty in ML classifiers, thereby effectively alerting human decision-makers. In this paper, we propose a novel uncertainty-aware SAR ATR for detecting adversarial attacks. Specifically, we leverage the capability of Bayesian Neural Networks (BNNs) in performing image classification with quantified epistemic uncertainty to measure the confidence for each input SAR image. By evaluating the uncertainty, our method alerts when the input SAR image is likely to be adversarially generated. Simultaneously, we also generate visual explanations that reveal the specific regions in the SAR image where the adversarial scatterers are likely to to be present, thus aiding human decision-making with hints of evidence of adversarial attacks. Experiments on the MSTAR dataset demonstrate that our approach can identify over 80% adversarial SAR images with fewer than 20% false alarms, and our visual explanations can identify up to over 90% of scatterers in an adversarial SAR image.
Abstract:Vision Transformers (ViTs) have achieved state-of-the-art accuracy on various computer vision tasks. However, their high computational complexity prevents them from being applied to many real-world applications. Weight and token pruning are two well-known methods for reducing complexity: weight pruning reduces the model size and associated computational demands, while token pruning further dynamically reduces the computation based on the input. Combining these two techniques should significantly reduce computation complexity and model size; however, naively integrating them results in irregular computation patterns, leading to significant accuracy drops and difficulties in hardware acceleration. Addressing the above challenges, we propose a comprehensive algorithm-hardware codesign for accelerating ViT on FPGA through simultaneous pruning -combining static weight pruning and dynamic token pruning. For algorithm design, we systematically combine a hardware-aware structured block-pruning method for pruning model parameters and a dynamic token pruning method for removing unimportant token vectors. Moreover, we design a novel training algorithm to recover the model's accuracy. For hardware design, we develop a novel hardware accelerator for executing the pruned model. The proposed hardware design employs multi-level parallelism with load balancing strategy to efficiently deal with the irregular computation pattern led by the two pruning approaches. Moreover, we develop an efficient hardware mechanism for efficiently executing the on-the-fly token pruning.
Abstract:Deep neural networks (DNNs) have proven to be effective models for accurate Memory Access Prediction (MAP), a critical task in mitigating memory latency through data prefetching. However, existing DNN-based MAP models suffer from the challenges such as significant physical storage space and poor inference latency, primarily due to their large number of parameters. These limitations render them impractical for deployment in real-world scenarios. In this paper, we propose PaCKD, a Pattern-Clustered Knowledge Distillation approach to compress MAP models while maintaining the prediction performance. The PaCKD approach encompasses three steps: clustering memory access sequences into distinct partitions involving similar patterns, training large pattern-specific teacher models for memory access prediction for each partition, and training a single lightweight student model by distilling the knowledge from the trained pattern-specific teachers. We evaluate our approach on LSTM, MLP-Mixer, and ResNet models, as they exhibit diverse structures and are widely used for image classification tasks in order to test their effectiveness in four widely used graph applications. Compared to the teacher models with 5.406M parameters and an F1-score of 0.4626, our student models achieve a 552$\times$ model size compression while maintaining an F1-score of 0.4538 (with a 1.92% performance drop). Our approach yields an 8.70% higher result compared to student models trained with standard knowledge distillation and an 8.88% higher result compared to student models trained without any form of knowledge distillation.
Abstract:Recently, Temporal Graph Neural Networks (TGNNs) have demonstrated state-of-the-art performance in various high-impact applications, including fraud detection and content recommendation. Despite the success of TGNNs, they are prone to the prevalent noise found in real-world dynamic graphs like time-deprecated links and skewed interaction distribution. The noise causes two critical issues that significantly compromise the accuracy of TGNNs: (1) models are supervised by inferior interactions, and (2) noisy input induces high variance in the aggregated messages. However, current TGNN denoising techniques do not consider the diverse and dynamic noise pattern of each node. In addition, they also suffer from the excessive mini-batch generation overheads caused by traversing more neighbors. We believe the remedy for fast and accurate TGNNs lies in temporal adaptive sampling. In this work, we propose TASER, the first adaptive sampling method for TGNNs optimized for accuracy, efficiency, and scalability. TASER adapts its mini-batch selection based on training dynamics and temporal neighbor selection based on the contextual, structural, and temporal properties of past interactions. To alleviate the bottleneck in mini-batch generation, TASER implements a pure GPU-based temporal neighbor finder and a dedicated GPU feature cache. We evaluate the performance of TASER using two state-of-the-art backbone TGNNs. On five popular datasets, TASER outperforms the corresponding baselines by an average of 2.3% in Mean Reciprocal Rank (MRR) while achieving an average of 5.1x speedup in training time.
Abstract:Vision Transformers (ViTs) have emerged as a state-of-the-art solution for object classification tasks. However, their computational demands and high parameter count make them unsuitable for real-time inference, prompting the need for efficient hardware implementations. Existing hardware accelerators for ViTs suffer from frequent off-chip memory access, restricting the achievable throughput by memory bandwidth. In devices with a high compute-to-communication ratio (e.g., edge FPGAs with limited bandwidth), off-chip memory access imposes a severe bottleneck on overall throughput. This work proposes ME-ViT, a novel \underline{M}emory \underline{E}fficient FPGA accelerator for \underline{ViT} inference that minimizes memory traffic. We propose a \textit{single-load policy} in designing ME-ViT: model parameters are only loaded once, intermediate results are stored on-chip, and all operations are implemented in a single processing element. To achieve this goal, we design a memory-efficient processing element (ME-PE), which processes multiple key operations of ViT inference on the same architecture through the reuse of \textit{multi-purpose buffers}. We also integrate the Softmax and LayerNorm functions into the ME-PE, minimizing stalls between matrix multiplications. We evaluate ME-ViT on systolic array sizes of 32 and 16, achieving up to a 9.22$\times$ and 17.89$\times$ overall improvement in memory bandwidth, and a 2.16$\times$ improvement in throughput per DSP for both designs over state-of-the-art ViT accelerators on FPGA. ME-ViT achieves a power efficiency improvement of up to 4.00$\times$ (1.03$\times$) over a GPU (FPGA) baseline. ME-ViT enables up to 5 ME-PE instantiations on a Xilinx Alveo U200, achieving a 5.10$\times$ improvement in throughput over the state-of-the art FPGA baseline, and a 5.85$\times$ (1.51$\times$) improvement in power efficiency over the GPU (FPGA) baseline.
Abstract:Image classifiers often rely on convolutional neural networks (CNN) for their tasks, which are inherently more heavyweight than multilayer perceptrons (MLPs), which can be problematic in real-time applications. Additionally, many image classification models work on both RGB and grayscale datasets. Classifiers that operate solely on grayscale images are much less common. Grayscale image classification has diverse applications, including but not limited to medical image classification and synthetic aperture radar (SAR) automatic target recognition (ATR). Thus, we present a novel grayscale (single channel) image classification approach using a vectorized view of images. We exploit the lightweightness of MLPs by viewing images as a vector and reducing our problem setting to the grayscale image classification setting. We find that using a single graph convolutional layer batch-wise increases accuracy and reduces variance in the performance of our model. Moreover, we develop a customized accelerator on FPGA for the proposed model with several optimizations to improve its performance. Our experimental results on benchmark grayscale image datasets demonstrate the effectiveness of the proposed model, achieving vastly lower latency (up to 16$\times$ less) and competitive or leading performance compared to other state-of-the-art image classification models on various domain-specific grayscale image classification datasets.
Abstract:Synthetic Aperture Radar (SAR) images are commonly utilized in military applications for automatic target recognition (ATR). Machine learning (ML) methods, such as Convolutional Neural Networks (CNN) and Graph Neural Networks (GNN), are frequently used to identify ground-based objects, including battle tanks, personnel carriers, and missile launchers. Determining the vehicle class, such as the BRDM2 tank, BMP2 tank, BTR60 tank, and BTR70 tank, is crucial, as it can help determine whether the target object is an ally or an enemy. While the ML algorithm provides feedback on the recognized target, the final decision is left to the commanding officers. Therefore, providing detailed information alongside the identified target can significantly impact their actions. This detailed information includes the SAR image features that contributed to the classification, the classification confidence, and the probability of the identified object being classified as a different object type or class. We propose a GNN-based ATR framework that provides the final classified class and outputs the detailed information mentioned above. This is the first study to provide a detailed analysis of the classification class, making final decisions more straightforward. Moreover, our GNN framework achieves an overall accuracy of 99.2\% when evaluated on the MSTAR dataset, improving over previous state-of-the-art GNN methods.
Abstract:Synthetic Aperture Radar SAR Automatic Target Recognition ATR is a key technique of remote-sensing image recognition which can be supported by deep neural networks The existing works of SAR ATR mostly focus on improving the accuracy of the target recognition while ignoring the systems performance in terms of speed and storage which is critical to real-world applications of SAR ATR For decision-makers aiming to identify a proper deep learning model to deploy in a SAR ATR system it is important to understand the performance of different candidate deep learning models and determine the best model accordingly This paper comprehensively benchmarks several advanced deep learning models for SAR ATR with multiple distinct SAR imagery datasets Specifically we train and test five SAR image classifiers based on Residual Neural Networks ResNet18 ResNet34 ResNet50 Graph Neural Network GNN and Vision Transformer for Small-Sized Datasets (SS-ViT) We select three datasets MSTAR GBSAR and SynthWakeSAR that offer heterogeneity We evaluate and compare the five classifiers concerning their classification accuracy runtime performance in terms of inference throughput and analytical performance in terms of number of parameters number of layers model size and number of operations Experimental results show that the GNN classifier outperforms with respect to throughput and latency However it is also shown that no clear model winner emerges from all of our chosen metrics and a one model rules all case is doubtful in the domain of SAR ATR