Abstract:As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise. Prior benchmarking efforts have primarily focused on latency reduction in idealized settings, often overlooking the diverse real-world inference workloads that shape energy use. In this work, we systematically analyze the energy implications of common inference efficiency optimizations across diverse Natural Language Processing (NLP) and generative Artificial Intelligence (AI) workloads, including conversational AI and code generation. We introduce a modeling approach that approximates real-world LLM workflows through a binning strategy for input-output token distributions and batch size variations. Our empirical analysis spans software frameworks, decoding strategies, GPU architectures, online and offline serving settings, and model parallelism configurations. We show that the effectiveness of inference optimizations is highly sensitive to workload geometry, software stack, and hardware accelerators, demonstrating that naive energy estimates based on FLOPs or theoretical GPU utilization significantly underestimate real-world energy consumption. Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines. These insights provide a foundation for sustainable LLM deployment and inform energy-efficient design strategies for future AI infrastructure.
Abstract:Large Language Models (LLMs) have become more prevalent in long-context applications such as interactive chatbots, document analysis, and agent workflows, but it is challenging to serve long-context requests with low latency and high throughput. Speculative decoding (SD) is a widely used technique to reduce latency without sacrificing performance but the conventional wisdom suggests that its efficacy is limited to small batch sizes. In MagicDec, we show that surprisingly SD can achieve speedup even for a high throughput inference regime for moderate to long sequences. More interestingly, an intelligent drafting strategy can achieve better speedup with increasing batch size based on our rigorous analysis. MagicDec first identifies the bottleneck shifts with increasing batch size and sequence length, and uses these insights to deploy speculative decoding more effectively for high throughput inference. Then, it leverages draft models with sparse KV cache to address the KV bottleneck that scales with both sequence length and batch size. This finding underscores the broad applicability of speculative decoding in long-context serving, as it can enhance throughput and reduce latency without compromising accuracy. For moderate to long sequences, we demonstrate up to 2x speedup for LLaMA-2-7B-32K and 1.84x speedup for LLaMA-3.1-8B when serving batch sizes ranging from 32 to 256 on 8 NVIDIA A100 GPUs. The code is available at https://github.com/Infini-AI-Lab/MagicDec/.