Abstract:We propose a novel Bayesian framework for efficient exploration in contextual multi-task multi-armed bandit settings, where the context is only observed partially and dependencies between reward distributions are induced by latent context variables. In order to exploit these structural dependencies, our approach integrates observations across all tasks and learns a global joint distribution, while still allowing personalised inference for new tasks. In this regard, we identify two key sources of epistemic uncertainty, namely structural uncertainty in the latent reward dependencies across arms and tasks, and user-specific uncertainty due to incomplete context and limited interaction history. To put our method into practice, we represent the joint distribution over tasks and rewards using a particle-based approximation of a log-density Gaussian process. This representation enables flexible, data-driven discovery of both inter-arm and inter-task dependencies without prior assumptions on the latent variables. Empirically, we demonstrate that our method outperforms baselines such as hierarchical model bandits, especially in settings with model misspecification or complex latent heterogeneity.




Abstract:In settings where only a budgeted amount of labeled data can be afforded, active learning seeks to devise query strategies for selecting the most informative data points to be labeled, aiming to enhance learning algorithms' efficiency and performance. Numerous such query strategies have been proposed and compared in the active learning literature. However, the community still lacks standardized benchmarks for comparing the performance of different query strategies. This particularly holds for the combination of query strategies with different learning algorithms into active learning pipelines and examining the impact of the learning algorithm choice. To close this gap, we propose ALPBench, which facilitates the specification, execution, and performance monitoring of active learning pipelines. It has built-in measures to ensure evaluations are done reproducibly, saving exact dataset splits and hyperparameter settings of used algorithms. In total, ALPBench consists of 86 real-world tabular classification datasets and 5 active learning settings, yielding 430 active learning problems. To demonstrate its usefulness and broad compatibility with various learning algorithms and query strategies, we conduct an exemplary study evaluating 9 query strategies paired with 8 learning algorithms in 2 different settings. We provide ALPBench here: https://github.com/ValentinMargraf/ActiveLearningPipelines.