Abstract:Recent search-augmented LLMs trained with reinforcement learning (RL) can interleave searching and reasoning for multi-hop reasoning tasks. However, they face two critical failure modes as the accumulating context becomes flooded with both crucial evidence and irrelevant information: (1) ineffective search chain construction that produces incorrect queries or omits retrieval of critical information, and (2) reasoning hijacking by peripheral evidence that causes models to misidentify distractors as valid evidence. To address these challenges, we propose **D$^2$Plan**, a **D**ual-agent **D**ynamic global **Plan**ning paradigm for complex retrieval-augmented reasoning. **D$^2$Plan** operates through the collaboration of a *Reasoner* and a *Purifier*: the *Reasoner* constructs explicit global plans during reasoning and dynamically adapts them based on retrieval feedback; the *Purifier* assesses retrieval relevance and condenses key information for the *Reasoner*. We further introduce a two-stage training framework consisting of supervised fine-tuning (SFT) cold-start on synthesized trajectories and RL with plan-oriented rewards to teach LLMs to master the **D$^2$Plan** paradigm. Extensive experiments demonstrate that **D$^2$Plan** enables more coherent multi-step reasoning and stronger resilience to irrelevant information, thereby achieving superior performance on challenging QA benchmarks.
Abstract:Strategic dialogue requires agents to execute distinct dialogue acts, for which belief estimation is essential. While prior work often estimates beliefs accurately, it lacks a principled mechanism to use those beliefs during generation. We bridge this gap by first formalizing two core acts Adversarial and Alignment, and by operationalizing them via probabilistic constraints on what an agent may generate. We instantiate this idea in BEDA, a framework that consists of the world set, the belief estimator for belief estimation, and the conditional generator that selects acts and realizes utterances consistent with the inferred beliefs. Across three settings, Conditional Keeper Burglar (CKBG, adversarial), Mutual Friends (MF, cooperative), and CaSiNo (negotiation), BEDA consistently outperforms strong baselines: on CKBG it improves success rate by at least 5.0 points across backbones and by 20.6 points with GPT-4.1-nano; on Mutual Friends it achieves an average improvement of 9.3 points; and on CaSiNo it achieves the optimal deal relative to all baselines. These results indicate that casting belief estimation as constraints provides a simple, general mechanism for reliable strategic dialogue.