Abstract:Cross-Modality Ship Re-Identification (CMS Re-ID) is critical for achieving all-day and all-weather maritime target tracking, yet it is fundamentally challenged by significant modality discrepancies. Mainstream solutions typically rely on explicit modality alignment strategies; however, this paradigm heavily depends on constructing large-scale paired datasets for pre-training. To address this, grounded in the Platonic Representation Hypothesis, we explore the potential of Vision Foundation Models (VFMs) in bridging modality gaps. Recognizing the suboptimal performance of existing generic Parameter-Efficient Fine-Tuning (PEFT) methods that operate within the weight space, particularly on limited-capacity models, we shift the optimization perspective to the feature space and propose a novel PEFT strategy termed Domain Representation Injection (DRI). Specifically, while keeping the VFM fully frozen to maximize the preservation of general knowledge, we design a lightweight, learnable Offset Encoder to extract domain-specific representations rich in modality and identity attributes from raw inputs. Guided by the contextual information of intermediate features at different layers, a Modulator adaptively transforms these representations. Subsequently, they are injected into the intermediate layers via additive fusion, dynamically reshaping the feature distribution to adapt to the downstream task without altering the VFM's pre-trained weights. Extensive experimental results demonstrate the superiority of our method, achieving State-of-the-Art (SOTA) performance with minimal trainable parameters. For instance, on the HOSS-ReID dataset, we attain 57.9\% and 60.5\% mAP using only 1.54M and 7.05M parameters, respectively. The code is available at https://github.com/TingfengXian/DRI.
Abstract:Although deep learning has advanced remote sensing change detection (RSCD), most methods rely solely on image modality, limiting feature representation, change pattern modeling, and generalization especially under illumination and noise disturbances. To address this, we propose MMChange, a multimodal RSCD method that combines image and text modalities to enhance accuracy and robustness. An Image Feature Refinement (IFR) module is introduced to highlight key regions and suppress environmental noise. To overcome the semantic limitations of image features, we employ a vision language model (VLM) to generate semantic descriptions of bitemporal images. A Textual Difference Enhancement (TDE) module then captures fine grained semantic shifts, guiding the model toward meaningful changes. To bridge the heterogeneity between modalities, we design an Image Text Feature Fusion (ITFF) module that enables deep cross modal integration. Extensive experiments on LEVIRCD, WHUCD, and SYSUCD demonstrate that MMChange consistently surpasses state of the art methods across multiple metrics, validating its effectiveness for multimodal RSCD. Code is available at: https://github.com/yikuizhai/MMChange.
Abstract:Reinforcement Learning from Human Feedback (RLHF) has emerged as a prominent paradigm for training large language models and multimodal systems. Despite notable advances enabled by existing RLHF training frameworks, significant challenges remain in scaling to complex multimodal workflows and adapting to dynamic workloads. In particular, current systems often encounter limitations related to controller scalability when managing large models, as well as inefficiencies in orchestrating intricate RLHF pipelines, especially in scenarios that require dynamic sampling and resource allocation. In this paper, we introduce WeChat-YATT (Yet Another Transformer Trainer in WeChat), a simple, scalable, and balanced RLHF training framework specifically designed to address these challenges. WeChat-YATT features a parallel controller programming model that enables flexible and efficient orchestration of complex RLHF workflows, effectively mitigating the bottlenecks associated with centralized controller architectures and facilitating scalability in large-scale data scenarios. In addition, we propose a dynamic placement schema that adaptively partitions computational resources and schedules workloads, thereby significantly reducing hardware idle time and improving GPU utilization under variable training conditions. We evaluate WeChat-YATT across a range of experimental scenarios, demonstrating that it achieves substantial improvements in throughput compared to state-of-the-art RLHF training frameworks. Furthermore, WeChat-YATT has been successfully deployed to train models supporting WeChat product features for a large-scale user base, underscoring its effectiveness and robustness in real-world applications.