Abstract:Generative Adversarial Networks (GANs) have long been used to understand the semantic relationship between the text and image. However, there are problems with mode collapsing in the image generation that causes some preferred output modes. Our aim is to improve the training of the network by using a specialized mode-seeking loss function to avoid this issue. In the text to image synthesis, our loss function differentiates two points in latent space for the generation of distinct images. We validate our model on the Caltech Birds (CUB) dataset and the Microsoft COCO dataset by changing the intensity of the loss function during the training. Experimental results demonstrate that our model works very well compared to some state-of-the-art approaches.
Abstract:Disentangled representations have been commonly adopted to Age-invariant Face Recognition (AiFR) tasks. However, these methods have reached some limitations with (1) the requirement of large-scale face recognition (FR) training data with age labels, which is limited in practice; (2) heavy deep network architecture for high performance; and (3) their evaluations are usually taken place on age-related face databases while neglecting the standard large-scale FR databases to guarantee its robustness. This work presents a novel Attentive Angular Distillation (AAD) approach to Large-scale Lightweight AiFR that overcomes these limitations. Given two high-performance heavy networks as teachers with different specialized knowledge, AAD introduces a learning paradigm to efficiently distill the age-invariant attentive and angular knowledge from those teachers to a lightweight student network making it more powerful with higher FR accuracy and robust against age factor. Consequently, AAD approach is able to take the advantages of both FR datasets with and without age labels to train an AiFR model. Far apart from prior distillation methods mainly focusing on accuracy and compression ratios in closed-set problems, our AAD aims to solve the open-set problem, i.e. large-scale face recognition. Evaluations on LFW, IJB-B and IJB-C Janus, AgeDB and MegaFace-FGNet with one million distractors have demonstrated the efficiency of the proposed approach. This work also presents a new longitudinal face aging (LogiFace) database for further studies in age-related facial problems in future.
Abstract:When analyzing the spread of viruses, epidemiologists often need to identify the location of infected hosts. This information can be found in public databases, such as GenBank, however, information provided in these databases are usually limited to the country or state level. More fine-grained localization information requires phylogeographers to manually read relevant scientific articles. In this work we propose an approach to automate the process of place name identification from medical (epidemiology) articles. The focus of this paper is to propose a deep learning based model for toponym detection and experiment with the use of external linguistic features and domain specific information. The model was evaluated using a collection of 105 epidemiology articles from PubMed Central provided by the recent SemEval task 12. Our best detection model achieves an F1 score of $80.13\%$, a significant improvement compared to the state of the art of $69.84\%$. These results underline the importance of domain specific embedding as well as specific linguistic features in toponym detection in medical journals.
Abstract:This paper presents a novel approach for synthesizing automatically age-progressed facial images in video sequences using Deep Reinforcement Learning. The proposed method models facial structures and the longitudinal face-aging process of given subjects coherently across video frames. The approach is optimized using a long-term reward, Reinforcement Learning function with deep feature extraction from Deep Convolutional Neural Network. Unlike previous age-progression methods that are only able to synthesize an aged likeness of a face from a single input image, the proposed approach is capable of age-progressing facial likenesses in videos with consistently synthesized facial features across frames. In addition, the deep reinforcement learning method guarantees preservation of the visual identity of input faces after age-progression. Results on videos of our new collected aging face AGFW-v2 database demonstrate the advantages of the proposed solution in terms of both quality of age-progressed faces, temporal smoothness, and cross-age face verification.
Abstract:This paper presents a novel Subject-dependent Deep Aging Path (SDAP), which inherits the merits of both Generative Probabilistic Modeling and Inverse Reinforcement Learning to model the facial structures and the longitudinal face aging process of a given subject. The proposed SDAP is optimized using tractable log-likelihood objective functions with Convolutional Neural Networks (CNNs) based deep feature extraction. Instead of applying a fixed aging development path for all input faces and subjects, SDAP is able to provide the most appropriate aging development path for individual subject that optimizes the reward aging formulation. Unlike previous methods that can take only one image as the input, SDAP further allows multiple images as inputs, i.e. all information of a subject at either the same or different ages, to produce the optimal aging path for the given subject. Finally, SDAP allows efficiently synthesizing in-the-wild aging faces. The proposed model is experimented in both tasks of face aging synthesis and cross-age face verification. The experimental results consistently show SDAP achieves the state-of-the-art performance on numerous face aging databases, i.e. FG-NET, MORPH, AginG Faces in the Wild (AGFW), and Cross-Age Celebrity Dataset (CACD). Furthermore, we also evaluate the performance of SDAP on large-scale Megaface challenge to demonstrate the advantages of the proposed solution.
Abstract:Face Aging has raised considerable attentions and interest from the computer vision community in recent years. Numerous approaches ranging from purely image processing techniques to deep learning structures have been proposed in literature. In this paper, we aim to give a review of recent developments of modern deep learning based approaches, i.e. Deep Generative Models, for Face Aging task. Their structures, formulation, learning algorithms as well as synthesized results are also provided with systematic discussions. Moreover, the aging databases used in most methods to learn the aging process are also reviewed.
Abstract:The "interpretation through synthesis" approach to analyze face images, particularly Active Appearance Models (AAMs) method, has become one of the most successful face modeling approaches over the last two decades. AAM models have ability to represent face images through synthesis using a controllable parameterized Principal Component Analysis (PCA) model. However, the accuracy and robustness of the synthesized faces of AAM are highly depended on the training sets and inherently on the generalizability of PCA subspaces. This paper presents a novel Deep Appearance Models (DAMs) approach, an efficient replacement for AAMs, to accurately capture both shape and texture of face images under large variations. In this approach, three crucial components represented in hierarchical layers are modeled using the Deep Boltzmann Machines (DBM) to robustly capture the variations of facial shapes and appearances. DAMs are therefore superior to AAMs in inferencing a representation for new face images under various challenging conditions. The proposed approach is evaluated in various applications to demonstrate its robustness and capabilities, i.e. facial super-resolution reconstruction, facial off-angle reconstruction or face frontalization, facial occlusion removal and age estimation using challenging face databases, i.e. Labeled Face Parts in the Wild (LFPW), Helen and FG-NET. Comparing to AAMs and other deep learning based approaches, the proposed DAMs achieve competitive results in those applications, thus this showed their advantages in handling occlusions, facial representation, and reconstruction.
Abstract:This paper presents a novel Robust Deep Appearance Models to learn the non-linear correlation between shape and texture of face images. In this approach, two crucial components of face images, i.e. shape and texture, are represented by Deep Boltzmann Machines and Robust Deep Boltzmann Machines (RDBM), respectively. The RDBM, an alternative form of Robust Boltzmann Machines, can separate corrupted/occluded pixels in the texture modeling to achieve better reconstruction results. The two models are connected by Restricted Boltzmann Machines at the top layer to jointly learn and capture the variations of both facial shapes and appearances. This paper also introduces new fitting algorithms with occlusion awareness through the mask obtained from the RDBM reconstruction. The proposed approach is evaluated in various applications by using challenging face datasets, i.e. Labeled Face Parts in the Wild (LFPW), Helen, EURECOM and AR databases, to demonstrate its robustness and capabilities.
Abstract:Modeling the face aging process is a challenging task due to large and non-linear variations present in different stages of face development. This paper presents a deep model approach for face age progression that can efficiently capture the non-linear aging process and automatically synthesize a series of age-progressed faces in various age ranges. In this approach, we first decompose the long-term age progress into a sequence of short-term changes and model it as a face sequence. The Temporal Deep Restricted Boltzmann Machines based age progression model together with the prototype faces are then constructed to learn the aging transformation between faces in the sequence. In addition, to enhance the wrinkles of faces in the later age ranges, the wrinkle models are further constructed using Restricted Boltzmann Machines to capture their variations in different facial regions. The geometry constraints are also taken into account in the last step for more consistent age-progressed results. The proposed approach is evaluated using various face aging databases, i.e. FG-NET, Cross-Age Celebrity Dataset (CACD) and MORPH, and our collected large-scale aging database named AginG Faces in the Wild (AGFW). In addition, when ground-truth age is not available for input image, our proposed system is able to automatically estimate the age of the input face before aging process is employed.