Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Deep conditional transformation models for survival analysis


Oct 20, 2022
Gabriele Campanella, Lucas Kook, Ida Häggström, Torsten Hothorn, Thomas J. Fuchs

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deep Learning-Based Objective and Reproducible Osteosarcoma Chemotherapy Response Assessment and Outcome Prediction


Aug 09, 2022
David Joon Ho, Narasimhan P. Agaram, Marc-Henri Jean, Stephanie D. Suser, Cynthia Chu, Chad M. Vanderbilt, Paul A. Meyers, Leonard H. Wexler, John H. Healey, Thomas J. Fuchs, Meera R. Hameed

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deep Interactive Learning-based ovarian cancer segmentation of H&E-stained whole slide images to study morphological patterns of BRCA mutation


Mar 28, 2022
David Joon Ho, M. Herman Chui, Chad M. Vanderbilt, Jiwon Jung, Mark E. Robson, Chan-Sik Park, Jin Roh, Thomas J. Fuchs

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

EPIC-Survival: End-to-end Part Inferred Clustering for Survival Analysis, Featuring Prognostic Stratification Boosting


Jan 28, 2021
Hassan Muhammad, Chensu Xie, Carlie S. Sigel, Michael Doukas, Lindsay Alpert, Thomas J. Fuchs

Add code

* co-first authors: Hassan Muhammad and Chensu Xie 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deep Interactive Learning: An Efficient Labeling Approach for Deep Learning-Based Osteosarcoma Treatment Response Assessment


Jul 02, 2020
David Joon Ho, Narasimhan P. Agaram, Peter J. Schueffler, Chad M. Vanderbilt, Marc-Henri Jean, Meera R. Hameed, Thomas J. Fuchs

Add code

* Accepted at MICCAI 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Deep Multi-Magnification Networks for Multi-Class Breast Cancer Image Segmentation


Oct 29, 2019
David Joon Ho, Dig V. K. Yarlagadda, Timothy M. D'Alfonso, Matthew G. Hanna, Anne Grabenstetter, Peter Ntiamoah, Edi Brogi, Lee K. Tan, Thomas J. Fuchs

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Towards Unsupervised Cancer Subtyping: Predicting Prognosis Using A Histologic Visual Dictionary


Mar 12, 2019
Hassan Muhammad, Carlie S. Sigel, Gabriele Campanella, Thomas Boerner, Linda M. Pak, Stefan Büttner, Jan N. M. IJzermans, Bas Groot Koerkamp, Michael Doukas, William R. Jarnagin, Amber Simpson, Thomas J. Fuchs

Add code

* 10 pages, 6 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Terabyte-scale Deep Multiple Instance Learning for Classification and Localization in Pathology


Sep 27, 2018
Gabriele Campanella, Vitor Werneck Krauss Silva, Thomas J. Fuchs

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

DeepPET: A deep encoder-decoder network for directly solving the PET reconstruction inverse problem


Sep 25, 2018
Ida Häggström, C. Ross Schmidtlein, Gabriele Campanella, Thomas J. Fuchs

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>