Johns Hopkins Applied Physics Laboratory
Abstract:Probabilistic Logic Programming (PLP) under the Distribution Semantics is a leading approach to practical reasoning under uncertainty. An advantage of the Distribution Semantics is its suitability for implementation as a Prolog or Python library, available through two well-maintained implementations, namely ProbLog and cplint/PITA. However, current formulations of the Distribution Semantics use point-probabilities, making it difficult to express epistemic uncertainty, such as arises from, for example, hierarchical classifications from computer vision models. Belief functions generalize probability measures as non-additive capacities, and address epistemic uncertainty via interval probabilities. This paper introduces interval-based Capacity Logic Programs based on an extension of the Distribution Semantics to include belief functions, and describes properties of the new framework that make it amenable to practical applications.
Abstract:Since the first conference In Marseille in 1982, the International Conference on Logic Programming (ICLP) has been the premier international event for presenting research in logic programming. These proceedings include technical communications about, and abstracts for presentations given at the 40th ICLP held October 14-17, in Dallas Texas, USA. The papers and abstracts in this volume include the following areas and topics. Formal and operational semantics: including non-monotonic reasoning, probabilistic reasoning, argumentation, and semantic issues of combining logic with neural models. Language design and programming methodologies such as answer set programming. inductive logic programming, and probabilistic programming. Program analysis and logic-based validation of generated programs. Implementation methodologies including constraint implementation, tabling, Logic-based prompt engineering, and the interaction of logic programming with LLMs.