Abstract:Graph neural networks (GNNs) are proven effective in extracting complex node and structural information from graph data. While current GNNs perform well in node classification tasks within in-distribution (ID) settings, real-world scenarios often present distribution shifts, leading to the presence of out-of-distribution (OOD) nodes. OOD detection in graphs is a crucial and challenging task. Most existing research focuses on homogeneous graphs, but real-world graphs are often heterogeneous, consisting of diverse node and edge types. This heterogeneity adds complexity and enriches the informational content. To the best of our knowledge, OOD detection in heterogeneous graphs remains an underexplored area. In this context, we propose a novel methodology for OOD detection in heterogeneous graphs (OODHG) that aims to achieve two main objectives: 1) detecting OOD nodes and 2) classifying all ID nodes based on the first task's results. Specifically, we learn representations for each node in the heterogeneous graph, calculate energy values to determine whether nodes are OOD, and then classify ID nodes. To leverage the structural information of heterogeneous graphs, we introduce a meta-path-based energy propagation mechanism and an energy constraint to enhance the distinction between ID and OOD nodes. Extensive experimental findings substantiate the simplicity and effectiveness of OODHG, demonstrating its superiority over baseline models in OOD detection tasks and its accuracy in ID node classification.
Abstract:Feature selection is a vital technique in machine learning, as it can reduce computational complexity, improve model performance, and mitigate the risk of overfitting. However, the increasing complexity and dimensionality of datasets pose significant challenges in the selection of features. Focusing on these challenges, this paper proposes a cascaded two-stage feature clustering and selection algorithm for fuzzy decision systems. In the first stage, we reduce the search space by clustering relevant features and addressing inter-feature redundancy. In the second stage, a clustering-based sequentially forward selection method that explores the global and local structure of data is presented. We propose a novel metric for assessing the significance of features, which considers both global separability and local consistency. Global separability measures the degree of intra-class cohesion and inter-class separation based on fuzzy membership, providing a comprehensive understanding of data separability. Meanwhile, local consistency leverages the fuzzy neighborhood rough set model to capture uncertainty and fuzziness in the data. The effectiveness of our proposed algorithm is evaluated through experiments conducted on 18 public datasets and a real-world schizophrenia dataset. The experiment results demonstrate our algorithm's superiority over benchmarking algorithms in both classification accuracy and the number of selected features.