Alert button
Picture for Suzan Bahadir

Suzan Bahadir

Alert button

BHSD: A 3D Multi-Class Brain Hemorrhage Segmentation Dataset

Aug 23, 2023
Biao Wu, Yutong Xie, Zeyu Zhang, Jinchao Ge, Kaspar Yaxley, Suzan Bahadir, Qi Wu, Yifan Liu, Minh-Son To

Figure 1 for BHSD: A 3D Multi-Class Brain Hemorrhage Segmentation Dataset
Figure 2 for BHSD: A 3D Multi-Class Brain Hemorrhage Segmentation Dataset
Figure 3 for BHSD: A 3D Multi-Class Brain Hemorrhage Segmentation Dataset
Figure 4 for BHSD: A 3D Multi-Class Brain Hemorrhage Segmentation Dataset

Intracranial hemorrhage (ICH) is a pathological condition characterized by bleeding inside the skull or brain, which can be attributed to various factors. Identifying, localizing and quantifying ICH has important clinical implications, in a bleed-dependent manner. While deep learning techniques are widely used in medical image segmentation and have been applied to the ICH segmentation task, existing public ICH datasets do not support the multi-class segmentation problem. To address this, we develop the Brain Hemorrhage Segmentation Dataset (BHSD), which provides a 3D multi-class ICH dataset containing 192 volumes with pixel-level annotations and 2200 volumes with slice-level annotations across five categories of ICH. To demonstrate the utility of the dataset, we formulate a series of supervised and semi-supervised ICH segmentation tasks. We provide experimental results with state-of-the-art models as reference benchmarks for further model developments and evaluations on this dataset.

* Accepted by MLMI 2023 
Viaarxiv icon