Abstract:Intelligent tutoring systems have demonstrated effectiveness in teaching formal propositional logic proofs, but their reliance on template-based explanations limits their ability to provide personalized student feedback. While large language models (LLMs) offer promising capabilities for dynamic feedback generation, they risk producing hallucinations or pedagogically unsound explanations. We evaluated the stepwise accuracy of LLMs in constructing multi-step symbolic logic proofs, comparing six prompting techniques across four state-of-the-art LLMs on 358 propositional logic problems. Results show that DeepSeek-V3 achieved superior performance with 84.4% accuracy on stepwise proof construction and excelled particularly in simpler rules. We further used the best-performing LLM to generate explanatory hints for 1,050 unique student problem-solving states from a logic ITS and evaluated them on 4 criteria with both an LLM grader and human expert ratings on a 20% sample. Our analysis finds that LLM-generated hints were 75% accurate and rated highly by human evaluators on consistency and clarity, but did not perform as well explaining why the hint was provided or its larger context. Our results demonstrate that LLMs may be used to augment tutoring systems with logic tutoring hints, but requires additional modifications to ensure accuracy and pedagogical appropriateness.
Abstract:Parkinson's disease (PD) diagnosis remains challenging due to lacking a reliable biomarker and limited access to clinical care. In this study, we present an analysis of the largest video dataset containing micro-expressions to screen for PD. We collected 3,871 videos from 1,059 unique participants, including 256 self-reported PD patients. The recordings are from diverse sources encompassing participants' homes across multiple countries, a clinic, and a PD care facility in the US. Leveraging facial landmarks and action units, we extracted features relevant to Hypomimia, a prominent symptom of PD characterized by reduced facial expressions. An ensemble of AI models trained on these features achieved an accuracy of 89.7% and an Area Under the Receiver Operating Characteristic (AUROC) of 89.3% while being free from detectable bias across population subgroups based on sex and ethnicity on held-out data. Further analysis reveals that features from the smiling videos alone lead to comparable performance, even on two external test sets the model has never seen during training, suggesting the potential for PD risk assessment from smiling selfie videos.