Abstract:Current agentic AI benchmarks predominantly evaluate task completion accuracy, while overlooking critical enterprise requirements such as cost-efficiency, reliability, and operational stability. Through systematic analysis of 12 main benchmarks and empirical evaluation of state-of-the-art agents, we identify three fundamental limitations: (1) absence of cost-controlled evaluation leading to 50x cost variations for similar precision, (2) inadequate reliability assessment where agent performance drops from 60\% (single run) to 25\% (8-run consistency), and (3) missing multidimensional metrics for security, latency, and policy compliance. We propose \textbf{CLEAR} (Cost, Latency, Efficacy, Assurance, Reliability), a holistic evaluation framework specifically designed for enterprise deployment. Evaluation of six leading agents on 300 enterprise tasks demonstrates that optimizing for accuracy alone yields agents 4.4-10.8x more expensive than cost-aware alternatives with comparable performance. Expert evaluation (N=15) confirms that CLEAR better predicts production success (correlation $ρ=0.83$) compared to accuracy-only evaluation ($ρ=0.41$).
Abstract:Machine learning systems exhibit diverse failure modes: unfairness toward protected groups, brittleness to spurious correlations, poor performance on minority sub-populations, which are typically studied in isolation by distinct research communities. We propose a unifying theoretical framework that characterizes when different bias mechanisms produce quantitatively equivalent effects on model performance. By formalizing biases as violations of conditional independence through information-theoretic measures, we prove formal equivalence conditions relating spurious correlations, subpopulation shift, class imbalance, and fairness violations. Our theory predicts that a spurious correlation of strength $α$ produces equivalent worst-group accuracy degradation as a sub-population imbalance ratio $r \approx (1+α)/(1-α)$ under feature overlap assumptions. Empirical validation in six datasets and three architectures confirms that predicted equivalences hold within the accuracy of the worst group 3\%, enabling the principled transfer of debiasing methods across problem domains. This work bridges the literature on fairness, robustness, and distribution shifts under a common perspective.
Abstract:In-context learning (ICL) enables large language models to adapt to new tasks from demonstrations without parameter updates. Despite extensive empirical studies, a principled understanding of ICL emergence at scale remains more elusive. We present a unified theoretical framework connecting scaling laws to ICL emergence in transformers. Our analysis establishes that ICL performance follows power-law relationships with model depth $L$, width $d$, context length $k$, and training data $D$, with exponents determined by task structure. We show that under specific conditions, transformers implement gradient-based metalearning in their forward pass, with an effective learning rate $η_{\text{eff}} = Θ(1/\sqrt{Ld})$. We demonstrate sharp phase transitions at critical scales and derive optimal depth-width allocations favoring $L^* \propto N^{2/3}$, $d^* \propto N^{1/3}$ for the fixed parameter budget $N = Ld$. Systematic experiments on synthetic tasks validate our predictions, with measured scaling exponents closely matching theory. This work provides both necessary and sufficient conditions for the emergence of ICLs and establishes fundamental computational limits on what transformers can learn in-context.
Abstract:We present the first comprehensive study of latent multi-head attention (MLA) for small language models, revealing interesting efficiency-quality trade-offs. Training 30M-parameter GPT models on 100,000 synthetic stories, we benchmark three architectural variants: standard multi-head attention (MHA), MLA, and MLA with rotary positional embeddings (MLA+RoPE). Our key finding is that MLA+RoPE with half-rank latent dimensions (r = d/2) achieves a 45% KV-cache memory reduction while incurring only a 0.3% increase in validation loss (essentially matching MHA quality)- a Pareto improvement for memory constrained deployment. We further show that RoPE is crucial for MLA in small models: without it, MLA underperforms vanilla attention by 3-5%, but with RoPE, it surpasses vanilla by 2%. Inference benchmarks on NVIDIA A100 GPUs reveal that MLA with r=d/2 achieves a 1.4 times speedup over full-rank MLA while maintaining the memory savings. GPT-4 evaluations corroborate perplexity results, with ours achieving the highest quality scores (7.4/10) across grammar, creativity, and consistency metrics. Code and models will be released upon acceptance.




Abstract:Recent years have witnessed some exciting developments in the domain of generating images from scene-based text descriptions. These approaches have primarily focused on generating images from a static text description and are limited to generating images in a single pass. They are unable to generate an image interactively based on an incrementally additive text description (something that is more intuitive and similar to the way we describe an image). We propose a method to generate an image incrementally based on a sequence of graphs of scene descriptions (scene-graphs). We propose a recurrent network architecture that preserves the image content generated in previous steps and modifies the cumulative image as per the newly provided scene information. Our model utilizes Graph Convolutional Networks (GCN) to cater to variable-sized scene graphs along with Generative Adversarial image translation networks to generate realistic multi-object images without needing any intermediate supervision during training. We experiment with Coco-Stuff dataset which has multi-object images along with annotations describing the visual scene and show that our model significantly outperforms other approaches on the same dataset in generating visually consistent images for incrementally growing scene graphs.