Abstract:Trustworthy clinical summarization requires not only fluent generation but also transparency about where each statement comes from. We propose a training-free framework for generation-time source attribution that leverages decoder attentions to directly cite supporting text spans or images, overcoming the limitations of post-hoc or retraining-based methods. We introduce two strategies for multimodal attribution: a raw image mode, which directly uses image patch attentions, and a caption-as-span mode, which substitutes images with generated captions to enable purely text-based alignment. Evaluations on two representative domains: clinician-patient dialogues (CliConSummation) and radiology reports (MIMIC-CXR), show that our approach consistently outperforms embedding-based and self-attribution baselines, improving both text-level and multimodal attribution accuracy (e.g., +15% F1 over embedding baselines). Caption-based attribution achieves competitive performance with raw-image attention while being more lightweight and practical. These findings highlight attention-guided attribution as a promising step toward interpretable and deployable clinical summarization systems.
Abstract:Ensuring clinical data privacy while preserving utility is critical for AI-driven healthcare and data analytics. Existing de-identification (De-ID) methods, including rule-based techniques, deep learning models, and large language models (LLMs), often suffer from recall errors, limited generalization, and inefficiencies, limiting their real-world applicability. We propose a fully automated, multi-modal framework, RedactOR for de-identifying structured and unstructured electronic health records, including clinical audio records. Our framework employs cost-efficient De-ID strategies, including intelligent routing, hybrid rule and LLM based approaches, and a two-step audio redaction approach. We present a retrieval-based entity relexicalization approach to ensure consistent substitutions of protected entities, thereby enhancing data coherence for downstream applications. We discuss key design desiderata, de-identification and relexicalization methodology, and modular architecture of RedactX and its integration with the Oracle Health Clinical AI system. Evaluated on the i2b2 2014 De-ID dataset using standard metrics with strict recall, our approach achieves competitive performance while optimizing token usage to reduce LLM costs. Finally, we discuss key lessons and insights from deployment in real-world AI- driven healthcare data pipelines.