Abstract:Determining the appropriate locus of care for addiction patients is one of the most critical clinical decisions that affects patient treatment outcomes and effective use of resources. With a lack of sufficient specialized treatment resources, such as inpatient beds or staff, there is an unmet need to develop an automated framework for the same. Current decision-making approaches suffer from severe class imbalances in addiction datasets. To address this limitation, we propose a novel graph neural network (GRACE) framework that formalizes locus of care prediction as a structured learning problem. Further, we perform extensive feature engineering and propose a new approach of obtaining an unbiased meta-graph to train a GNN to overcome the class imbalance problem. Experimental results in real-world data show an improvement of 11-35% in terms of the F1 score of the minority class over competitive baselines. The codes and note embeddings are available at https://anonymous.4open.science/r/GRACE-F8E1/.




Abstract:This paper describes our submissions to SemEval 2020 Task 11: Detection of Propaganda Techniques in News Articles for each of the two subtasks of Span Identification and Technique Classification. We make use of pre-trained BERT language model enhanced with tagging techniques developed for the task of Named Entity Recognition (NER), to develop a system for identifying propaganda spans in the text. For the second subtask, we incorporate contextual features in a pre-trained RoBERTa model for the classification of propaganda techniques. We were ranked 5th in the propaganda technique classification subtask.




Abstract:Line art is arguably one of the fundamental and versatile modes of expression. We propose a pipeline for a robot to look at a grayscale line art and redraw it. The key novel elements of our pipeline are: a) we propose a novel task of mimicking line drawings, b) to solve the pipeline we modify the Quick-draw dataset to obtain supervised training for converting a line drawing into a series of strokes c) we propose a multi-stage segmentation and graph interpretation pipeline for solving the problem. The resultant method has also been deployed on a CNC plotter as well as a robotic arm. We have trained several variations of the proposed methods and evaluate these on a dataset obtained from Quick-draw. Through the best methods we observe an accuracy of around 98% for this task, which is a significant improvement over the baseline architecture we adapted from. This therefore allows for deployment of the method on robots for replicating line art in a reliable manner. We also show that while the rule-based vectorization methods do suffice for simple drawings, it fails for more complicated sketches, unlike our method which generalizes well to more complicated distributions.