Abstract:This paper presents a novel CNN-RNN based approach, which exploits multiple CNN features for dimensional emotion recognition in-the-wild, utilizing the One-Minute Gradual-Emotion (OMG-Emotion) dataset. Our approach includes first pre-training with the relevant and large in size, Aff-Wild and Aff-Wild2 emotion databases. Low-, mid- and high-level features are extracted from the trained CNN component and are exploited by RNN subnets in a multi-task framework. Their outputs constitute an intermediate level prediction; final estimates are obtained as the mean or median values of these predictions. Fusion of the networks is also examined for boosting the obtained performance, at Decision-, or at Model-level; in the latter case a RNN was used for the fusion. Our approach, although using only the visual modality, outperformed state-of-the-art methods that utilized audio and visual modalities. Some of our developments have been submitted to the OMG-Emotion Challenge, ranking second among the technologies which used only visual information for valence estimation; ranking third overall. Through extensive experimentation, we further show that arousal estimation is greatly improved when low-level features are combined with high-level ones.
Abstract:Affective computing has been largely limited in terms of available data resources. The need to collect and annotate diverse in-the-wild datasets has become apparent with the rise of deep learning models, as the default approach to address any computer vision task. Some in-the-wild databases have been recently proposed. However: i) their size is small, ii) they are not audiovisual, iii) only a small part is manually annotated, iv) they contain a small number of subjects, or v) they are not annotated for all main behavior tasks (valence-arousal estimation, action unit detection and basic expression classification). To address these, we substantially extend the largest available in-the-wild database (Aff-Wild) to study continuous emotions such as valence and arousal. Furthermore, we annotate parts of the database with basic expressions and action units. As a consequence, for the first time, this allows the joint study of all three types of behavior states. We call this database Aff-Wild2. We conduct extensive experiments with CNN and CNN-RNN architectures that use visual and audio modalities; these networks are trained on Aff-Wild2 and their performance is then evaluated on 10 publicly available emotion databases. We show that the networks achieve state-of-the-art performance for the emotion recognition tasks. Additionally, we adapt the ArcFace loss function in the emotion recognition context and use it for training two new networks on Aff-Wild2 and then re-train them in a variety of diverse expression recognition databases. The networks are shown to improve the existing state-of-the-art. The database, emotion recognition models and source code are available at http://ibug.doc.ic.ac.uk/resources/aff-wild2.
Abstract:Generating realistic 3D faces is of high importance for computer graphics and computer vision applications. Generally, research on 3D face generation revolves around linear statistical models of the facial surface. Nevertheless, these models cannot represent faithfully either the facial texture or the normals of the face, which are very crucial for photo-realistic face synthesis. Recently, it was demonstrated that Generative Adversarial Networks (GANs) can be used for generating high-quality textures of faces. Nevertheless, the generation process either omits the geometry and normals, or independent processes are used to produce 3D shape information. In this paper, we present the first methodology that generates high-quality texture, shape, and normals jointly, which can be used for photo-realistic synthesis. To do so, we propose a novel GAN that can generate data from different modalities while exploiting their correlations. Furthermore, we demonstrate how we can condition the generation on the expression and create faces with various facial expressions. The qualitative results shown in this pre-print is compressed due to size limitations, full resolution results and the accompanying video can be found at the project page: https://github.com/barisgecer/TBGAN.
Abstract:Image-to-image (i2i) translation is the dense regression problem of learning how to transform an input image into an output using aligned image pairs. Remarkable progress has been made in i2i translation with the advent of Deep Convolutional Neural Networks (DCNNs) and particular using the learning paradigm of Generative Adversarial Networks (GANs). In the absence of paired images, i2i translation is tackled with one or multiple domain transformations (i.e., CycleGAN, StarGAN etc.). In this paper, we study a new problem, that of image-to-image translation, under a set of continuous parameters that correspond to a model describing a physical process. In particular, we propose the SliderGAN which transforms an input face image into a new one according to the continuous values of a statistical blendshape model of facial motion. We show that it is possible to edit a facial image according to expression and speech blendshapes, using sliders that control the continuous values of the blendshape model. This provides much more flexibility in various tasks, including but not limited to face editing, expression transfer and face neutralisation, comparing to models based on discrete expressions or action units.
Abstract:Generative Adversarial Networks (GANs) have become the gold standard when it comes to learning generative models that can describe intricate, high-dimensional distributions. Since their advent, numerous variations of GANs have been introduced in the literature, primarily focusing on utilization of novel loss functions, optimization/regularization strategies and architectures. In this work, we take an orthogonal approach to the above and turn our attention to the generator. We propose to model the data generator by means of a high-order polynomial using tensorial factors. We design a hierarchical decomposition of the polynomial and demonstrate how it can be efficiently implemented by a neural network. We show, for the first time, that by using our decomposition a GAN generator can approximate the data distribution by only using linear/convolution blocks without using any activation functions. Finally, we highlight that PolyGAN can be easily adapted and used along-side all major GAN architectures. In an extensive series of quantitative and qualitative experiments, PolyGAN improves upon the state-of-the-art by a significant margin.
Abstract:Despite remarkable success in image-to-image translation that celebrates the advancements of generative adversarial networks (GANs), very limited attempts are known for video domain translation. We study the task of video-to-video translation in the context of visual speech generation, where the goal is to transform an input video of any spoken word to an output video of a different word. This is a multi-domain translation, where each word forms a domain of videos uttering this word. Adaptation of the state-of-the-art image-to-image translation model (StarGAN) to this setting falls short with a large vocabulary size. Instead we propose to use character encodings of the words and design a novel character-based GANs architecture for video-to-video translation called Visual Speech GAN (ViSpGAN). We are the first to demonstrate video-to-video translation with a vocabulary of 500 words.
Abstract:Monocular 3D reconstruction of deformable objects, such as human body parts, has been typically approached by predicting parameters of heavyweight linear models. In this paper, we demonstrate an alternative solution that is based on the idea of encoding images into a latent non-linear representation of meshes. The prior on 3D hand shapes is learned by training an autoencoder with intrinsic graph convolutions performed in the spectral domain. The pre-trained decoder acts as a non-linear statistical deformable model. The latent parameters that reconstruct the shape and articulated pose of hands in the image are predicted using an image encoder. We show that our system reconstructs plausible meshes and operates in real-time. We evaluate the quality of the mesh reconstructions produced by the decoder on a new dataset and show latent space interpolation results. Our code, data, and models will be made publicly available.
Abstract:Over the past few years, Generative Adversarial Networks (GANs) have garnered increased interest among researchers in Computer Vision, with applications including, but not limited to, image generation, translation, imputation, and super-resolution. Nevertheless, no GAN-based method has been proposed in the literature that can successfully represent, generate or translate 3D facial shapes (meshes). This can be primarily attributed to two facts, namely that (a) publicly available 3D face databases are scarce as well as limited in terms of sample size and variability (e.g., few subjects, little diversity in race and gender), and (b) mesh convolutions for deep networks present several challenges that are not entirely tackled in the literature, leading to operator approximations and model instability, often failing to preserve high-frequency components of the distribution. As a result, linear methods such as Principal Component Analysis (PCA) have been mainly utilized towards 3D shape analysis, despite being unable to capture non-linearities and high frequency details of the 3D face - such as eyelid and lip variations. In this work, we present 3DFaceGAN, the first GAN tailored towards modeling the distribution of 3D facial surfaces, while retaining the high frequency details of 3D face shapes. We conduct an extensive series of both qualitative and quantitative experiments, where the merits of 3DFaceGAN are clearly demonstrated against other, state-of-the-art methods in tasks such as 3D shape representation, generation, and translation.
Abstract:Generative models for 3D geometric data arise in many important applications in 3D computer vision and graphics. In this paper, we focus on 3D deformable shapes that share a common topological structure, such as human faces and bodies. Morphable Models were among the first attempts to create compact representations for such shapes; despite their effectiveness and simplicity, such models have limited representation power due to their linear formulation. Recently, non-linear learnable methods have been proposed, although most of them resort to intermediate representations, such as 3D grids of voxels or 2D views. In this paper, we introduce a convolutional mesh autoencoder and a GAN architecture based on the spiral convolutional operator, acting directly on the mesh and leveraging its underlying geometric structure. We provide an analysis of our convolution operator and demonstrate state-of-the-art results on 3D shape datasets compared to the linear Morphable Model and the recently proposed COMA model.
Abstract:Though tremendous strides have been made in uncontrolled face detection, accurate and efficient face localisation in the wild remains an open challenge. This paper presents a robust single-stage face detector, named RetinaFace, which performs pixel-wise face localisation on various scales of faces by taking advantages of joint extra-supervised and self-supervised multi-task learning. Specifically, We make contributions in the following five aspects: (1) We manually annotate five facial landmarks on the WIDER FACE dataset and observe significant improvement in hard face detection with the assistance of this extra supervision signal. (2) We further add a self-supervised mesh decoder branch for predicting a pixel-wise 3D shape face information in parallel with the existing supervised branches. (3) On the WIDER FACE hard test set, RetinaFace outperforms the state of the art average precision (AP) by 1.1% (achieving AP equal to 91.4%). (4) On the IJB-C test set, RetinaFace enables state of the art methods (ArcFace) to improve their results in face verification (TAR=89.59% for FAR=1e-6). (5) By employing light-weight backbone networks, RetinaFace can run real-time on a single CPU core for a VGA-resolution image. Extra annotations and code have been made available at: https://github.com/deepinsight/insightface/tree/master/RetinaFace.