Abstract:Nowadays, the rapid growth of Deep Neural Network (DNN) architectures has established them as the defacto approach for providing advanced Machine Learning tasks with excellent accuracy. Targeting low-power DNN computing, this paper examines the interplay of fine-grained error resilience of DNN workloads in collaboration with hardware approximation techniques, to achieve higher levels of energy efficiency. Utilizing the state-of-the-art ROUP approximate multipliers, we systematically explore their fine-grained distribution across the network according to our layer-, filter-, and kernel-level approaches, and examine their impact on accuracy and energy. We use the ResNet-8 model on the CIFAR-10 dataset to evaluate our approximations. The proposed solution delivers up to 54% energy gains in exchange for up to 4% accuracy loss, compared to the baseline quantized model, while it provides 2x energy gains with better accuracy versus the state-of-the-art DNN approximations.
Abstract:The NP-complete combinatorial optimization task of assigning offsets to a set of buffers with known sizes and lifetimes so as to minimize total memory usage is called dynamic storage allocation (DSA). Existing DSA implementations bypass the theoretical state-of-the-art algorithms in favor of either fast but wasteful heuristics, or memory-efficient approaches that do not scale beyond one thousand buffers. The "AI memory wall", combined with deep neural networks' static architecture, has reignited interest in DSA. We present idealloc, a low-fragmentation, high-performance DSA implementation designed for million-buffer instances. Evaluated on a novel suite of particularly hard benchmarks from several domains, idealloc ranks first against four production implementations in terms of a joint effectiveness/robustness criterion.
Abstract:As Large Language Models (LLMs) gain traction, their reliance on power-hungry GPUs places ever-increasing energy demands, raising environmental and monetary concerns. Inference dominates LLM workloads, presenting a critical challenge for providers: minimizing energy costs under Service-Level Objectives (SLOs) that ensure optimal user experience. In this paper, we present \textit{throttLL'eM}, a framework that reduces energy consumption while meeting SLOs through the use of instance and GPU frequency scaling. \textit{throttLL'eM} features mechanisms that project future KV cache usage and batch size. Leveraging a Machine-Learning (ML) model that receives these projections as inputs, \textit{throttLL'eM} manages performance at the iteration level to satisfy SLOs with reduced frequencies and instance sizes. We show that the proposed ML model achieves $R^2$ scores greater than 0.97 and miss-predicts performance by less than 1 iteration per second on average. Experimental results on LLM inference traces show that \textit{throttLL'eM} achieves up to 43.8\% lower energy consumption and an energy efficiency improvement of at least $1.71\times$ under SLOs, when compared to NVIDIA's Triton server.
Abstract:Recent advancements in quantization and mixed-precision approaches offers substantial opportunities to improve the speed and energy efficiency of Neural Networks (NN). Research has shown that individual parameters with varying low precision, can attain accuracies comparable to full-precision counterparts. However, modern embedded microprocessors provide very limited support for mixed-precision NNs regarding both Instruction Set Architecture (ISA) extensions and their hardware design for efficient execution of mixed-precision operations, i.e., introducing several performance bottlenecks due to numerous instructions for data packing and unpacking, arithmetic unit under-utilizations etc. In this work, we bring together, for the first time, ISA extensions tailored to mixed-precision hardware optimizations, targeting energy-efficient DNN inference on leading RISC-V CPU architectures. To this end, we introduce a hardware-software co-design framework that enables cooperative hardware design, mixed-precision quantization, ISA extensions and inference in cycle-accurate emulations. At hardware level, we firstly expand the ALU unit within our proof-of-concept micro-architecture to support configurable fine grained mixed-precision arithmetic operations. Subsequently, we implement multi-pumping to minimize execution latency, with an additional soft SIMD optimization applied for 2-bit operations. At the ISA level, three distinct MAC instructions are encoded extending the RISC-V ISA, and exposed up to the compiler level, each corresponding to a different mixed-precision operational mode. Our extensive experimental evaluation over widely used DNNs and datasets, such as CIFAR10 and ImageNet, demonstrates that our framework can achieve, on average, 15x energy reduction for less than 1% accuracy loss and outperforms the ISA-agnostic state-of-the-art RISC-V cores.