Abstract:Zero-shot Image Captioning (ZIC) increasingly utilizes synthetic datasets generated by text-to-image (T2I) models to mitigate the need for costly manual annotation. However, these T2I models often produce images that exhibit semantic misalignments with their corresponding input captions (e.g., missing objects, incorrect attributes), resulting in noisy synthetic image-caption pairs that can hinder model training. Existing dataset pruning techniques are largely designed for removing noisy text in web-crawled data. However, these methods are ill-suited for the distinct challenges of synthetic data, where captions are typically well-formed, but images may be inaccurate representations. To address this gap, we introduce SynC, a novel framework specifically designed to refine synthetic image-caption datasets for ZIC. Instead of conventional filtering or regeneration, SynC focuses on reassigning captions to the most semantically aligned images already present within the synthetic image pool. Our approach employs a one-to-many mapping strategy by initially retrieving multiple relevant candidate images for each caption. We then apply a cycle-consistency-inspired alignment scorer that selects the best image by verifying its ability to retrieve the original caption via image-to-text retrieval. Extensive evaluations demonstrate that SynC consistently and significantly improves performance across various ZIC models on standard benchmarks (MS-COCO, Flickr30k, NoCaps), achieving state-of-the-art results in several scenarios. SynC offers an effective strategy for curating refined synthetic data to enhance ZIC.
Abstract:This work addresses the task of completely weakly supervised class-incremental learning for semantic segmentation to learn segmentation for both base and additional novel classes using only image-level labels. While class-incremental semantic segmentation (CISS) is crucial for handling diverse and newly emerging objects in the real world, traditional CISS methods require expensive pixel-level annotations for training. To overcome this limitation, partially weakly-supervised approaches have recently been proposed. However, to the best of our knowledge, this is the first work to introduce a completely weakly-supervised method for CISS. To achieve this, we propose to generate robust pseudo-labels by combining pseudo-labels from a localizer and a sequence of foundation models based on their uncertainty. Moreover, to mitigate catastrophic forgetting, we introduce an exemplar-guided data augmentation method that generates diverse images containing both previous and novel classes with guidance. Finally, we conduct experiments in three common experimental settings: 15-5 VOC, 10-10 VOC, and COCO-to-VOC, and in two scenarios: disjoint and overlap. The experimental results demonstrate that our completely weakly supervised method outperforms even partially weakly supervised methods in the 15-5 VOC and 10-10 VOC settings while achieving competitive accuracy in the COCO-to-VOC setting.
Abstract:Recent lightweight image captioning models using retrieved data mainly focus on text prompts. However, previous works only utilize the retrieved text as text prompts, and the visual information relies only on the CLIP visual embedding. Because of this issue, there is a limitation that the image descriptions inherent in the prompt are not sufficiently reflected in the visual embedding space. To tackle this issue, we propose ViPCap, a novel retrieval text-based visual prompt for lightweight image captioning. ViPCap leverages the retrieved text with image information as visual prompts to enhance the ability of the model to capture relevant visual information. By mapping text prompts into the CLIP space and generating multiple randomized Gaussian distributions, our method leverages sampling to explore randomly augmented distributions and effectively retrieves the semantic features that contain image information. These retrieved features are integrated into the image and designated as the visual prompt, leading to performance improvements on the datasets such as COCO, Flickr30k, and NoCaps. Experimental results demonstrate that ViPCap significantly outperforms prior lightweight captioning models in efficiency and effectiveness, demonstrating the potential for a plug-and-play solution.
Abstract:Recent advancements in image captioning have explored text-only training methods to overcome the limitations of paired image-text data. However, existing text-only training methods often overlook the modality gap between using text data during training and employing images during inference. To address this issue, we propose a novel approach called Image-like Retrieval, which aligns text features with visually relevant features to mitigate the modality gap. Our method further enhances the accuracy of generated captions by designing a Fusion Module that integrates retrieved captions with input features. Additionally, we introduce a Frequency-based Entity Filtering technique that significantly improves caption quality. We integrate these methods into a unified framework, which we refer to as IFCap ($\textbf{I}$mage-like Retrieval and $\textbf{F}$requency-based Entity Filtering for Zero-shot $\textbf{Cap}$tioning). Through extensive experimentation, our straightforward yet powerful approach has demonstrated its efficacy, outperforming the state-of-the-art methods by a significant margin in both image captioning and video captioning compared to zero-shot captioning based on text-only training.
Abstract:We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.