Abstract:Dense video captioning aims to temporally localize events in video and generate captions for each event. While recent works propose end-to-end models, they suffer from two limitations: (1) applying timestamp supervision only to text while treating all video frames equally, and (2) retrieving captions from fixed-size video chunks, overlooking scene transitions. To address these, we propose Sali4Vid, a simple yet effective saliency-aware framework. We introduce Saliency-aware Video Reweighting, which converts timestamp annotations into sigmoid-based frame importance weights, and Semantic-based Adaptive Caption Retrieval, which segments videos by frame similarity to capture scene transitions and improve caption retrieval. Sali4Vid achieves state-of-the-art results on YouCook2 and ViTT, demonstrating the benefit of jointly improving video weighting and retrieval for dense video captioning
Abstract:Zero-shot Image Captioning (ZIC) increasingly utilizes synthetic datasets generated by text-to-image (T2I) models to mitigate the need for costly manual annotation. However, these T2I models often produce images that exhibit semantic misalignments with their corresponding input captions (e.g., missing objects, incorrect attributes), resulting in noisy synthetic image-caption pairs that can hinder model training. Existing dataset pruning techniques are largely designed for removing noisy text in web-crawled data. However, these methods are ill-suited for the distinct challenges of synthetic data, where captions are typically well-formed, but images may be inaccurate representations. To address this gap, we introduce SynC, a novel framework specifically designed to refine synthetic image-caption datasets for ZIC. Instead of conventional filtering or regeneration, SynC focuses on reassigning captions to the most semantically aligned images already present within the synthetic image pool. Our approach employs a one-to-many mapping strategy by initially retrieving multiple relevant candidate images for each caption. We then apply a cycle-consistency-inspired alignment scorer that selects the best image by verifying its ability to retrieve the original caption via image-to-text retrieval. Extensive evaluations demonstrate that SynC consistently and significantly improves performance across various ZIC models on standard benchmarks (MS-COCO, Flickr30k, NoCaps), achieving state-of-the-art results in several scenarios. SynC offers an effective strategy for curating refined synthetic data to enhance ZIC.