Anjelica
Abstract:Robust robot manipulation in unstructured environments often requires understanding object properties that extend beyond geometry, such as material or compliance-properties that can be challenging to infer using vision alone. Multimodal haptic sensing provides a promising avenue for inferring such properties, yet progress has been constrained by the lack of large, diverse, and realistic haptic datasets. In this work, we introduce the CLAMP device, a low-cost (<\$200) sensorized reacher-grabber designed to collect large-scale, in-the-wild multimodal haptic data from non-expert users in everyday settings. We deployed 16 CLAMP devices to 41 participants, resulting in the CLAMP dataset, the largest open-source multimodal haptic dataset to date, comprising 12.3 million datapoints across 5357 household objects. Using this dataset, we train a haptic encoder that can infer material and compliance object properties from multimodal haptic data. We leverage this encoder to create the CLAMP model, a visuo-haptic perception model for material recognition that generalizes to novel objects and three robot embodiments with minimal finetuning. We also demonstrate the effectiveness of our model in three real-world robot manipulation tasks: sorting recyclable and non-recyclable waste, retrieving objects from a cluttered bag, and distinguishing overripe from ripe bananas. Our results show that large-scale, in-the-wild haptic data collection can unlock new capabilities for generalizable robot manipulation. Website: https://emprise.cs.cornell.edu/clamp/
Abstract:The paper presents REPeat, a Real2Sim2Real framework designed to enhance bite acquisition in robot-assisted feeding for soft foods. It uses `pre-acquisition actions' such as pushing, cutting, and flipping to improve the success rate of bite acquisition actions such as skewering, scooping, and twirling. If the data-driven model predicts low success for direct bite acquisition, the system initiates a Real2Sim phase, reconstructing the food's geometry in a simulation. The robot explores various pre-acquisition actions in the simulation, then a Sim2Real step renders a photorealistic image to reassess success rates. If the success improves, the robot applies the action in reality. We evaluate the system on 15 diverse plates with 10 types of food items for a soft food diet, showing improvement in bite acquisition success rates by 27\% on average across all plates. See our project website at https://emprise.cs.cornell.edu/repeat.