Anjelica
Abstract:Robust robot manipulation in unstructured environments often requires understanding object properties that extend beyond geometry, such as material or compliance-properties that can be challenging to infer using vision alone. Multimodal haptic sensing provides a promising avenue for inferring such properties, yet progress has been constrained by the lack of large, diverse, and realistic haptic datasets. In this work, we introduce the CLAMP device, a low-cost (<\$200) sensorized reacher-grabber designed to collect large-scale, in-the-wild multimodal haptic data from non-expert users in everyday settings. We deployed 16 CLAMP devices to 41 participants, resulting in the CLAMP dataset, the largest open-source multimodal haptic dataset to date, comprising 12.3 million datapoints across 5357 household objects. Using this dataset, we train a haptic encoder that can infer material and compliance object properties from multimodal haptic data. We leverage this encoder to create the CLAMP model, a visuo-haptic perception model for material recognition that generalizes to novel objects and three robot embodiments with minimal finetuning. We also demonstrate the effectiveness of our model in three real-world robot manipulation tasks: sorting recyclable and non-recyclable waste, retrieving objects from a cluttered bag, and distinguishing overripe from ripe bananas. Our results show that large-scale, in-the-wild haptic data collection can unlock new capabilities for generalizable robot manipulation. Website: https://emprise.cs.cornell.edu/clamp/
Abstract:Meal preparation is an important instrumental activity of daily living~(IADL). While existing research has explored robotic assistance in meal preparation tasks such as cutting and cooking, the crucial task of peeling has received less attention. Robot-assisted peeling, conventionally a bimanual task, is challenging to deploy in the homes of care recipients using two wheelchair-mounted robot arms due to ergonomic and transferring challenges. This paper introduces a robot-assisted peeling system utilizing a single robotic arm and an assistive cutting board, inspired by the way individuals with one functional hand prepare meals. Our system incorporates a multimodal active perception module to determine whether an area on the food is peeled, a human-in-the-loop long-horizon planner to perform task planning while catering to a user's preference for peeling coverage, and a compliant controller to peel the food items. We demonstrate the system on 12 food items representing the extremes of different shapes, sizes, skin thickness, surface textures, skin vs flesh colors, and deformability.