Abstract:Twisted String Actuators (TSAs) are widely used in robotics but suffer from a limited range of Transmission Ratio (TR) variation, restricting their efficiency under varying loads.To overcome this, we propose a novel lightweight, simple-structured Continuously Variable Transmission (CVT) mechanism for TSA utilizing Shape Memory Alloy (SMA) superelasticity. The CVT mechanism consists solely of a pair of highly lightweight superelastic SMA rods connecting the ends of twisted strings. These rods deform under external loads, adjusting the inter-string distance to enable continuous TR variation.We develop a comprehensive theoretical model that integrates three critical nonlinearities
Abstract:Recent approaches employing imperceptible perturbations in input images have demonstrated promising potential to counter malicious manipulations in diffusion-based image editing systems. However, existing methods suffer from limited transferability in cross-model evaluations. To address this, we propose Transferable Defense Against Malicious Image Edits (TDAE), a novel bimodal framework that enhances image immunity against malicious edits through coordinated image-text optimization. Specifically, at the visual defense level, we introduce FlatGrad Defense Mechanism (FDM), which incorporates gradient regularization into the adversarial objective. By explicitly steering the perturbations toward flat minima, FDM amplifies immune robustness against unseen editing models. For textual enhancement protection, we propose an adversarial optimization paradigm named Dynamic Prompt Defense (DPD), which periodically refines text embeddings to align the editing outcomes of immunized images with those of the original images, then updates the images under optimized embeddings. Through iterative adversarial updates to diverse embeddings, DPD enforces the generation of immunized images that seek a broader set of immunity-enhancing features, thereby achieving cross-model transferability. Extensive experimental results demonstrate that our TDAE achieves state-of-the-art performance in mitigating malicious edits under both intra- and cross-model evaluations.
Abstract:Recent progress in text-to-image diffusion models has transformed image editing via text prompts, yet this also introduces significant ethical challenges from potential misuse in creating deceptive or harmful content. While current defenses seek to mitigate this risk by embedding imperceptible perturbations, their effectiveness is limited against malicious tampering. To address this issue, we propose a Dual Attention-Guided Noise Perturbation (DANP) immunization method that adds imperceptible perturbations to disrupt the model's semantic understanding and generation process. DANP functions over multiple timesteps to manipulate both cross-attention maps and the noise prediction process, using a dynamic threshold to generate masks that identify text-relevant and irrelevant regions. It then reduces attention in relevant areas while increasing it in irrelevant ones, thereby misguides the edit towards incorrect regions and preserves the intended targets. Additionally, our method maximizes the discrepancy between the injected noise and the model's predicted noise to further interfere with the generation. By targeting both attention and noise prediction mechanisms, DANP exhibits impressive immunity against malicious edits, and extensive experiments confirm that our method achieves state-of-the-art performance.
Abstract:Text-guided image editing via diffusion models, while powerful, raises significant concerns about misuse, motivating efforts to immunize images against unauthorized edits using imperceptible perturbations. Prevailing metrics for evaluating immunization success typically rely on measuring the visual dissimilarity between the output generated from a protected image and a reference output generated from the unprotected original. This approach fundamentally overlooks the core requirement of image immunization, which is to disrupt semantic alignment with attacker intent, regardless of deviation from any specific output. We argue that immunization success should instead be defined by the edited output either semantically mismatching the prompt or suffering substantial perceptual degradations, both of which thwart malicious intent. To operationalize this principle, we propose Synergistic Intermediate Feature Manipulation (SIFM), a method that strategically perturbs intermediate diffusion features through dual synergistic objectives: (1) maximizing feature divergence from the original edit trajectory to disrupt semantic alignment with the expected edit, and (2) minimizing feature norms to induce perceptual degradations. Furthermore, we introduce the Immunization Success Rate (ISR), a novel metric designed to rigorously quantify true immunization efficacy for the first time. ISR quantifies the proportion of edits where immunization induces either semantic failure relative to the prompt or significant perceptual degradations, assessed via Multimodal Large Language Models (MLLMs). Extensive experiments show our SIFM achieves the state-of-the-art performance for safeguarding visual content against malicious diffusion-based manipulation.




Abstract:Stereo image super-resolution (SR) refers to the reconstruction of a high-resolution (HR) image from a pair of low-resolution (LR) images as typically captured by a dual-camera device. To enhance the quality of SR images, most previous studies focused on increasing the number and size of feature maps and introducing complex and computationally intensive structures, resulting in models with high computational complexity. Here, we propose a simple yet efficient stereo image SR model called NAFRSSR, which is modified from the previous state-of-the-art model NAFSSR by introducing recursive connections and lightweighting the constituent modules. Our NAFRSSR model is composed of nonlinear activation free and group convolution-based blocks (NAFGCBlocks) and depth-separated stereo cross attention modules (DSSCAMs). The NAFGCBlock improves feature extraction and reduces number of parameters by removing the simple channel attention mechanism from NAFBlock and using group convolution. The DSSCAM enhances feature fusion and reduces number of parameters by replacing 1x1 pointwise convolution in SCAM with weight-shared 3x3 depthwise convolution. Besides, we propose to incorporate trainable edge detection operator into NAFRSSR to further improve the model performance. Four variants of NAFRSSR with different sizes, namely, NAFRSSR-Mobile (NAFRSSR-M), NAFRSSR-Tiny (NAFRSSR-T), NAFRSSR-Super (NAFRSSR-S) and NAFRSSR-Base (NAFRSSR-B) are designed, and they all exhibit fewer parameters, higher PSNR/SSIM, and faster speed than the previous state-of-the-art models. In particular, to the best of our knowledge, NAFRSSR-M is the lightest (0.28M parameters) and fastest (50 ms inference time) model achieving an average PSNR/SSIM as high as 24.657 dB/0.7622 on the benchmark datasets. Codes and models will be released at https://github.com/JNUChenYiHong/NAFRSSR.