Abstract:As a revolutionary paradigm for intelligently controlling wireless channels, intelligent reflecting surface (IRS) has emerged as a promising technology for future sixth-generation (6G) wireless communications. While IRS-aided communication systems can achieve attractive high channel gains, existing schemes require plenty of IRS elements to mitigate the ``multiplicative fading'' effect in cascaded channels, leading to high complexity for real-time beamforming and high signaling overhead for channel estimation. In this paper, the concept of sustainable intelligent element-grouping IRS (IEG-IRS) is proposed to overcome those fundamental bottlenecks. Specifically, based on the statistical channel state information (S-CSI), the proposed grouping strategy intelligently pre-divide the IEG-IRS elements into multiple groups based on the beam-domain grouping method, with each group sharing the common reflection coefficient and being optimized in real time using the instantaneous channel state information (I-CSI). Then, we further analyze the asymptotic performance of the IEG-IRS to reveal the substantial capacity gain in an extremely large-scale IRS (XL-IRS) aided single-user single-input single-output (SU-SISO) system. In particular, when a line-of-sight (LoS) component exists, it demonstrates that the combined cascaded link can be considered as a ``deterministic virtual LoS'' channel, resulting in a sustainable squared array gain achieved by the IEG-IRS. Finally, we formulate a weighted-sum-rate (WSR) maximization problem for an IEG-IRS-aided multiuser multiple-input single-output (MU-MISO) system and a two-stage algorithm for optimizing the beam-domain grouping strategy and the multi-user active-passive beamforming is proposed.
Abstract:Most existing Grammatical Error Correction (GEC) methods based on sequence-to-sequence mainly focus on how to generate more pseudo data to obtain better performance. Few work addresses few-shot GEC domain adaptation. In this paper, we treat different GEC domains as different GEC tasks and propose to extend meta-learning to few-shot GEC domain adaptation without using any pseudo data. We exploit a set of data-rich source domains to learn the initialization of model parameters that facilitates fast adaptation on new resource-poor target domains. We adapt GEC model to the first language (L1) of the second language learner. To evaluate the proposed method, we use nine L1s as source domains and five L1s as target domains. Experiment results on the L1 GEC domain adaptation dataset demonstrate that the proposed approach outperforms the multi-task transfer learning baseline by 0.50 $F_{0.5}$ score on average and enables us to effectively adapt to a new L1 domain with only 200 parallel sentences.