Abstract:Origami-inspired mechanisms can transform flat sheets into functional three-dimensional dynamic structures that are lightweight, compact, and capable of complex motion. These properties make origami increasingly valuable in robotic and deployable systems. However, accurately simulating their folding behavior and interactions with the environment remains challenging. To address this, we present a design framework for origami mechanism simulation that utilizes MuJoCo's deformable-body capabilities. In our approach, origami sheets are represented as graphs of interconnected deformable elements with user-specified constraints such as creases and actuation, defined through an intuitive graphical user interface (GUI). This framework allows users to generate physically consistent simulations that capture both the geometric structure of origami mechanisms and their interactions with external objects and surfaces. We demonstrate our method's utility through a case study on an origami catapult, where design parameters are optimized in simulation using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and validated experimentally on physical prototypes. The optimized structure achieves improved throwing performance, illustrating how our system enables rapid, simulation-driven origami design, optimization, and analysis.
Abstract:Amphibians adapt their morphologies and motions to accommodate movement in both terrestrial and aquatic environments. Inspired by these biological features, we present PuffyBot, an untethered shape morphing robot capable of changing its body morphology to navigate multiple environments. Our robot design leverages a scissor-lift mechanism driven by a linear actuator as its primary structure to achieve shape morphing. The transformation enables a volume change from 255.00 cm3 to 423.75 cm3, modulating the buoyant force to counteract a downward force of 3.237 N due to 330 g mass of the robot. A bell-crank linkage is integrated with the scissor-lift mechanism, which adjusts the servo-actuated limbs by 90 degrees, allowing a seamless transition between crawling and swimming modes. The robot is fully waterproof, using thermoplastic polyurethane (TPU) fabric to ensure functionality in aquatic environments. The robot can operate untethered for two hours with an onboard battery of 1000 mA h. Our experimental results demonstrate multi-environment locomotion, including crawling on the land, crawling on the underwater floor, swimming on the water surface, and bimodal buoyancy adjustment to submerge underwater or resurface. These findings show the potential of shape morphing to create versatile and energy efficient robotic platforms suitable for diverse environments.
Abstract:In this work we extend the results developed in 2022 for a sequential change detection algorithm making use of Page's CUSUM statistic, the empirical distribution as an estimate of the pre-change distribution, and a universal code as a tool for estimating the post-change distribution, from the i.i.d. case to the Markov setup.




Abstract:Language models often exhibit undesirable behaviors, such as gender bias or toxic language. Interventions in the representation space were shown effective in mitigating such issues by altering the LM behavior. We first show that two prominent intervention techniques, Linear Erasure and Steering Vectors, do not enable a high degree of control and are limited in expressivity. We then propose a novel intervention methodology for generating expressive counterfactuals in the representation space, aiming to make representations of a source class (e.g., "toxic") resemble those of a target class (e.g., "non-toxic"). This approach, generalizing previous linear intervention techniques, utilizes a closed-form solution for the Earth Mover's problem under Gaussian assumptions and provides theoretical guarantees on the representation space's geometric organization. We further build on this technique and derive a nonlinear intervention that enables controlled generation. We demonstrate the effectiveness of the proposed approaches in mitigating bias in multiclass classification and in reducing the generation of toxic language, outperforming strong baselines.