Columbia University
Abstract:Evaluating image editing models remains challenging due to the coarse granularity and limited interpretability of traditional metrics, which often fail to capture aspects important to human perception and intent. Such metrics frequently reward visually plausible outputs while overlooking controllability, edit localization, and faithfulness to user instructions. In this work, we introduce a fine-grained Multimodal Large Language Model (MLLM)-as-a-Judge framework for image editing that decomposes common evaluation notions into twelve fine-grained interpretable factors spanning image preservation, edit quality, and instruction fidelity. Building on this formulation, we present a new human-validated benchmark that integrates human judgments, MLLM-based evaluations, model outputs, and traditional metrics across diverse image editing tasks. Through extensive human studies, we show that the proposed MLLM judges align closely with human evaluations at a fine granularity, supporting their use as reliable and scalable evaluators. We further demonstrate that traditional image editing metrics are often poor proxies for these factors, failing to distinguish over-edited or semantically imprecise outputs, whereas our judges provide more intuitive and informative assessments in both offline and online settings. Together, this work introduces a benchmark, a principled factorization, and empirical evidence positioning fine-grained MLLM judges as a practical foundation for studying, comparing, and improving image editing approaches.