Abstract:Multimodal data modeling has emerged as a powerful approach in clinical research, enabling the integration of diverse data types such as imaging, genomics, wearable sensors, and electronic health records. Despite its potential to improve diagnostic accuracy and support personalized care, modeling such heterogeneous data presents significant technical challenges. This systematic review synthesizes findings from 69 studies to identify common obstacles, including missing modalities, limited sample sizes, dimensionality imbalance, interpretability issues, and finding the optimal fusion techniques. We highlight recent methodological advances, such as transfer learning, generative models, attention mechanisms, and neural architecture search that offer promising solutions. By mapping current trends and innovations, this review provides a comprehensive overview of the field and offers practical insights to guide future research and development in multimodal modeling for medical applications.
Abstract:Training high-quality CLIP models typically requires enormous datasets, which limits the development of domain-specific models -- especially in areas that even the largest CLIP models do not cover well -- and drives up training costs. This poses challenges for scientific research that needs fine-grained control over the training procedure of CLIP models. In this work, we show that by employing smart web search strategies enhanced with knowledge graphs, a robust CLIP model can be trained from scratch with considerably less data. Specifically, we demonstrate that an expert foundation model for living organisms can be built using just 10M images. Moreover, we introduce EntityNet, a dataset comprising 33M images paired with 46M text descriptions, which enables the training of a generic CLIP model in significantly reduced time.