Abstract:Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text. This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion. For example, by observing a partial stack of cubes, LLMs can predict the correct sequence in which the remaining cubes should be stacked by extrapolating the observed patterns (e.g., cube sizes, colors or other attributes) in the partial stack. In this work, we introduce LaGR (Language-Guided Reinforcement learning), which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent, in order to subsequently guide the latter's training. However, as RL training is generally not sample-efficient, deploying this approach would inherently imply that the LLM be repeatedly queried for solutions; a process that can be expensive and infeasible. To address this issue, we introduce SEQ (sample efficient querying), where we simultaneously train a secondary RL agent to decide when the LLM should be queried for solutions. Specifically, we use the quality of the solutions emanating from the LLM as the reward to train this agent. We show that our proposed framework LaGR-SEQ enables more efficient primary RL training, while simultaneously minimizing the number of queries to the LLM. We demonstrate our approach on a series of tasks and highlight the advantages of our approach, along with its limitations and potential future research directions.
Abstract:Model selection is an integral problem of model based optimization techniques such as Bayesian optimization (BO). Current approaches often treat model selection as an estimation problem, to be periodically updated with observations coming from the optimization iterations. In this paper, we propose an alternative way to achieve both efficiently. Specifically, we propose a novel way of integrating model selection and BO for the single goal of reaching the function optima faster. The algorithm moves back and forth between BO in the model space and BO in the function space, where the goodness of the recommended model is captured by a score function and fed back, capturing how well the model helped convergence in the function space. The score function is derived in such a way that it neutralizes the effect of the moving nature of the BO in the function space, thus keeping the model selection problem stationary. This back and forth leads to quick convergence for both model selection and BO in the function space. In addition to improved sample efficiency, the framework outputs information about the black-box function. Convergence is proved, and experimental results show significant improvement compared to standard BO.
Abstract:We can usually assume others have goals analogous to our own. This assumption can also, at times, be applied to multi-agent games - e.g. Agent 1's attraction to green pellets is analogous to Agent 2's attraction to red pellets. This "analogy" assumption is tied closely to the cognitive process known as empathy. Inspired by empathy, we design a simple and explainable architecture to model another agent's action-value function. This involves learning an "Imagination Network" to transform the other agent's observed state in order to produce a human-interpretable "empathetic state" which, when presented to the learning agent, produces behaviours that mimic the other agent. Our approach is applicable to multi-agent scenarios consisting of a single learning agent and other (independent) agents acting according to fixed policies. This architecture is particularly beneficial for (but not limited to) algorithms using a composite value or reward function. We show our method produces better performance in multi-agent games, where it robustly estimates the other's model in different environment configurations. Additionally, we show that the empathetic states are human interpretable, and thus verifiable.
Abstract:Targeted model poisoning attacks pose a significant threat to federated learning systems. Recent studies show that edge-case targeted attacks, which target a small fraction of the input space are nearly impossible to counter using existing fixed defense strategies. In this paper, we strive to design a learned-defense strategy against such attacks, using a small defense dataset. The defense dataset can be collected by the central authority of the federated learning task, and should contain a mix of poisoned and clean examples. The proposed framework, LearnDefend, estimates the probability of a client update being malicious. The examples in defense dataset need not be pre-marked as poisoned or clean. We also learn a poisoned data detector model which can be used to mark each example in the defense dataset as clean or poisoned. We estimate the poisoned data detector and the client importance models in a coupled optimization approach. Our experiments demonstrate that LearnDefend is capable of defending against state-of-the-art attacks where existing fixed defense strategies fail. We also show that LearnDefend is robust to size and noise in the marking of clean examples in the defense dataset.
Abstract:Autonomously learning diverse behaviors without an extrinsic reward signal has been a problem of interest in reinforcement learning. However, the nature of learning in such mechanisms is unconstrained, often resulting in the accumulation of several unusable, unsafe or misaligned skills. In order to avoid such issues and ensure the discovery of safe and human-aligned skills, it is necessary to incorporate humans into the unsupervised training process, which remains a largely unexplored research area. In this work, we propose Controlled Diversity with Preference (CDP), a novel, collaborative human-guided mechanism for an agent to learn a set of skills that is diverse as well as desirable. The key principle is to restrict the discovery of skills to those regions that are deemed to be desirable as per a preference model trained using human preference labels on trajectory pairs. We evaluate our approach on 2D navigation and Mujoco environments and demonstrate the ability to discover diverse, yet desirable skills.
Abstract:In this paper we introduce BO-Muse, a new approach to human-AI teaming for the optimization of expensive black-box functions. Inspired by the intrinsic difficulty of extracting expert knowledge and distilling it back into AI models and by observations of human behaviour in real-world experimental design, our algorithm lets the human expert take the lead in the experimental process. The human expert can use their domain expertise to its full potential, while the AI plays the role of a muse, injecting novelty and searching for areas of weakness to break the human out of over-exploitation induced by cognitive entrenchment. With mild assumptions, we show that our algorithm converges sub-linearly, at a rate faster than the AI or human alone. We validate our algorithm using synthetic data and with human experts performing real-world experiments.
Abstract:Simulation based learning often provides a cost-efficient recourse to reinforcement learning applications in robotics. However, simulators are generally incapable of accurately replicating real-world dynamics, and thus bridging the sim2real gap is an important problem in simulation based learning. Current solutions to bridge the sim2real gap involve hybrid simulators that are augmented with neural residual models. Unfortunately, they require a separate residual model for each individual environment configuration (i.e., a fixed setting of environment variables such as mass, friction etc.), and thus are not transferable to new environments quickly. To address this issue, we propose a Reverse Action Transformation (RAT) policy which learns to imitate simulated policies in the real-world. Once learnt from a single environment, RAT can then be deployed on top of a Universal Policy Network to achieve zero-shot adaptation to new environments. We empirically evaluate our approach in a set of continuous control tasks and observe its advantage as a few-shot and zero-shot learner over competing baselines.
Abstract:The study of Neural Tangent Kernels (NTKs) has provided much needed insight into convergence and generalization properties of neural networks in the over-parametrized (wide) limit by approximating the network using a first-order Taylor expansion with respect to its weights in the neighborhood of their initialization values. This allows neural network training to be analyzed from the perspective of reproducing kernel Hilbert spaces (RKHS), which is informative in the over-parametrized regime, but a poor approximation for narrower networks as the weights change more during training. Our goal is to extend beyond the limits of NTK toward a more general theory. We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights as an inner product of two feature maps, respectively from data and weight-step space, to feature space, allowing neural network training to be analyzed from the perspective of reproducing kernel {\em Banach} space (RKBS). We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning in RKBS. Using this, we present novel bound on uniform convergence where the iterations count and learning rate play a central role, giving new theoretical insight into neural network training.
Abstract:Data-free Knowledge Distillation (DFKD) has attracted attention recently thanks to its appealing capability of transferring knowledge from a teacher network to a student network without using training data. The main idea is to use a generator to synthesize data for training the student. As the generator gets updated, the distribution of synthetic data will change. Such distribution shift could be large if the generator and the student are trained adversarially, causing the student to forget the knowledge it acquired at previous steps. To alleviate this problem, we propose a simple yet effective method called Momentum Adversarial Distillation (MAD) which maintains an exponential moving average (EMA) copy of the generator and uses synthetic samples from both the generator and the EMA generator to train the student. Since the EMA generator can be considered as an ensemble of the generator's old versions and often undergoes a smaller change in updates compared to the generator, training on its synthetic samples can help the student recall the past knowledge and prevent the student from adapting too quickly to new updates of the generator. Our experiments on six benchmark datasets including big datasets like ImageNet and Places365 demonstrate the superior performance of MAD over competing methods for handling the large distribution shift problem. Our method also compares favorably to existing DFKD methods and even achieves state-of-the-art results in some cases.
Abstract:Adversarial attacks on deep learning-based models pose a significant threat to the current AI infrastructure. Among them, Trojan attacks are the hardest to defend against. In this paper, we first introduce a variation of the Badnet kind of attacks that introduces Trojan backdoors to multiple target classes and allows triggers to be placed anywhere in the image. The former makes it more potent and the latter makes it extremely easy to carry out the attack in the physical space. The state-of-the-art Trojan detection methods fail with this threat model. To defend against this attack, we first introduce a trigger reverse-engineering mechanism that uses multiple images to recover a variety of potential triggers. We then propose a detection mechanism by measuring the transferability of such recovered triggers. A Trojan trigger will have very high transferability i.e. they make other images also go to the same class. We study many practical advantages of our attack method and then demonstrate the detection performance using a variety of image datasets. The experimental results show the superior detection performance of our method over the state-of-the-arts.