Alert button
Picture for Sam Blackwell

Sam Blackwell

Alert button

Finding Increasingly Large Extremal Graphs with AlphaZero and Tabu Search

Nov 06, 2023
Abbas Mehrabian, Ankit Anand, Hyunjik Kim, Nicolas Sonnerat, Matej Balog, Gheorghe Comanici, Tudor Berariu, Andrew Lee, Anian Ruoss, Anna Bulanova, Daniel Toyama, Sam Blackwell, Bernardino Romera Paredes, Petar Veličković, Laurent Orseau, Joonkyung Lee, Anurag Murty Naredla, Doina Precup, Adam Zsolt Wagner

This work studies a central extremal graph theory problem inspired by a 1975 conjecture of Erd\H{o}s, which aims to find graphs with a given size (number of nodes) that maximize the number of edges without having 3- or 4-cycles. We formulate this problem as a sequential decision-making problem and compare AlphaZero, a neural network-guided tree search, with tabu search, a heuristic local search method. Using either method, by introducing a curriculum -- jump-starting the search for larger graphs using good graphs found at smaller sizes -- we improve the state-of-the-art lower bounds for several sizes. We also propose a flexible graph-generation environment and a permutation-invariant network architecture for learning to search in the space of graphs.

* Accepted at MATH AI workshop at NeurIPS 2023, First three authors contributed equally, Last two authors have equal senior contribution 
Viaarxiv icon

Learning to Decode the Surface Code with a Recurrent, Transformer-Based Neural Network

Oct 09, 2023
Johannes Bausch, Andrew W Senior, Francisco J H Heras, Thomas Edlich, Alex Davies, Michael Newman, Cody Jones, Kevin Satzinger, Murphy Yuezhen Niu, Sam Blackwell, George Holland, Dvir Kafri, Juan Atalaya, Craig Gidney, Demis Hassabis, Sergio Boixo, Hartmut Neven, Pushmeet Kohli

Figure 1 for Learning to Decode the Surface Code with a Recurrent, Transformer-Based Neural Network
Figure 2 for Learning to Decode the Surface Code with a Recurrent, Transformer-Based Neural Network
Figure 3 for Learning to Decode the Surface Code with a Recurrent, Transformer-Based Neural Network
Figure 4 for Learning to Decode the Surface Code with a Recurrent, Transformer-Based Neural Network

Quantum error-correction is a prerequisite for reliable quantum computation. Towards this goal, we present a recurrent, transformer-based neural network which learns to decode the surface code, the leading quantum error-correction code. Our decoder outperforms state-of-the-art algorithmic decoders on real-world data from Google's Sycamore quantum processor for distance 3 and 5 surface codes. On distances up to 11, the decoder maintains its advantage on simulated data with realistic noise including cross-talk, leakage, and analog readout signals, and sustains its accuracy far beyond the 25 cycles it was trained on. Our work illustrates the ability of machine learning to go beyond human-designed algorithms by learning from data directly, highlighting machine learning as a strong contender for decoding in quantum computers.

Viaarxiv icon

A Deep Learning Approach for Characterizing Major Galaxy Mergers

Feb 09, 2021
Skanda Koppula, Victor Bapst, Marc Huertas-Company, Sam Blackwell, Agnieszka Grabska-Barwinska, Sander Dieleman, Andrea Huber, Natasha Antropova, Mikolaj Binkowski, Hannah Openshaw, Adria Recasens, Fernando Caro, Avishai Deke, Yohan Dubois, Jesus Vega Ferrero, David C. Koo, Joel R. Primack, Trevor Back

Figure 1 for A Deep Learning Approach for Characterizing Major Galaxy Mergers
Figure 2 for A Deep Learning Approach for Characterizing Major Galaxy Mergers
Figure 3 for A Deep Learning Approach for Characterizing Major Galaxy Mergers

Fine-grained estimation of galaxy merger stages from observations is a key problem useful for validation of our current theoretical understanding of galaxy formation. To this end, we demonstrate a CNN-based regression model that is able to predict, for the first time, using a single image, the merger stage relative to the first perigee passage with a median error of 38.3 million years (Myrs) over a period of 400 Myrs. This model uses no specific dynamical modeling and learns only from simulated merger events. We show that our model provides reasonable estimates on real observations, approximately matching prior estimates provided by detailed dynamical modeling. We provide a preliminary interpretability analysis of our models, and demonstrate first steps toward calibrated uncertainty estimation.

* Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada 
Viaarxiv icon

Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy

Sep 12, 2018
Stanislav Nikolov, Sam Blackwell, Ruheena Mendes, Jeffrey De Fauw, Clemens Meyer, Cían Hughes, Harry Askham, Bernardino Romera-Paredes, Alan Karthikesalingam, Carlton Chu, Dawn Carnell, Cheng Boon, Derek D'Souza, Syed Ali Moinuddin, Kevin Sullivan, DeepMind Radiographer Consortium, Hugh Montgomery, Geraint Rees, Ricky Sharma, Mustafa Suleyman, Trevor Back, Joseph R. Ledsam, Olaf Ronneberger

Figure 1 for Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy
Figure 2 for Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy
Figure 3 for Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy
Figure 4 for Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy

Over half a million individuals are diagnosed with head and neck cancer each year worldwide. Radiotherapy is an important curative treatment for this disease, but it requires manually intensive delineation of radiosensitive organs at risk (OARs). This planning process can delay treatment commencement. While auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying and achieving expert performance remain. Adopting a deep learning approach, we demonstrate a 3D U-Net architecture that achieves performance similar to experts in delineating a wide range of head and neck OARs. The model was trained on a dataset of 663 deidentified computed tomography (CT) scans acquired in routine clinical practice and segmented according to consensus OAR definitions. We demonstrate its generalisability through application to an independent test set of 24 CT scans available from The Cancer Imaging Archive collected at multiple international sites previously unseen to the model, each segmented by two independent experts and consisting of 21 OARs commonly segmented in clinical practice. With appropriate validation studies and regulatory approvals, this system could improve the effectiveness of radiotherapy pathways.

Viaarxiv icon

Massively Parallel Methods for Deep Reinforcement Learning

Jul 16, 2015
Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu, David Silver

Figure 1 for Massively Parallel Methods for Deep Reinforcement Learning
Figure 2 for Massively Parallel Methods for Deep Reinforcement Learning
Figure 3 for Massively Parallel Methods for Deep Reinforcement Learning
Figure 4 for Massively Parallel Methods for Deep Reinforcement Learning

We present the first massively distributed architecture for deep reinforcement learning. This architecture uses four main components: parallel actors that generate new behaviour; parallel learners that are trained from stored experience; a distributed neural network to represent the value function or behaviour policy; and a distributed store of experience. We used our architecture to implement the Deep Q-Network algorithm (DQN). Our distributed algorithm was applied to 49 games from Atari 2600 games from the Arcade Learning Environment, using identical hyperparameters. Our performance surpassed non-distributed DQN in 41 of the 49 games and also reduced the wall-time required to achieve these results by an order of magnitude on most games.

* Presented at the Deep Learning Workshop, International Conference on Machine Learning, Lille, France, 2015 
Viaarxiv icon