Abstract:The rapid rise of deepfake technology poses a severe threat to social and political stability by enabling hyper-realistic synthetic media capable of manipulating public perception. However, existing detection methods struggle with two core limitations: (1) modality fragmentation, which leads to poor generalization across diverse and adversarial deepfake modalities; and (2) shallow inter-modal reasoning, resulting in limited detection of fine-grained semantic inconsistencies. To address these, we propose ConLLM (Contrastive Learning with Large Language Models), a hybrid framework for robust multimodal deepfake detection. ConLLM employs a two-stage architecture: stage 1 uses Pre-Trained Models (PTMs) to extract modality-specific embeddings; stage 2 aligns these embeddings via contrastive learning to mitigate modality fragmentation, and refines them using LLM-based reasoning to address shallow inter-modal reasoning by capturing semantic inconsistencies. ConLLM demonstrates strong performance across audio, video, and audio-visual modalities. It reduces audio deepfake EER by up to 50%, improves video accuracy by up to 8%, and achieves approximately 9% accuracy gains in audio-visual tasks. Ablation studies confirm that PTM-based embeddings contribute 9%-10% consistent improvements across modalities.
Abstract:Clinical Question-Answering (CQA) industry systems are increasingly rely on Large Language Models (LLMs), yet their deployment is often guided by the assumption that domain-specific fine-tuning is essential. Although specialised medical LLMs such as BioBERT, BioGPT, and PubMedBERT remain popular, they face practical limitations including narrow coverage, high retraining costs, and limited adaptability. Efforts based on Supervised Fine-Tuning (SFT) have attempted to address these assumptions but continue to reinforce what we term the SPECIALISATION FALLACY-the belief that specialised medical LLMs are inherently superior for CQA. To address this assumption, we introduce MEDASSESS-X, a deployment-industry-oriented CQA framework that applies alignment at inference time rather than through SFT. MEDASSESS-X uses lightweight steering vectors to guide model activations toward medically consistent reasoning without updating model weights or requiring domain-specific retraining. This inference-time alignment layer stabilises CQA performance across both general-purpose and specialised medical LLMs, thereby resolving the SPECIALISATION FALLACY. Empirically, MEDASSESS-X delivers consistent gains across all LLM families, improving Accuracy by up to +6%, Factual Consistency by +7%, and reducing Safety Error Rate by as much as 50%.