Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Processes


Aug 09, 2014
Ryan Prescott Adams, George E. Dahl, Iain Murray

* Appears in Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI2010) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Freeze-Thaw Bayesian Optimization


Jun 16, 2014
Kevin Swersky, Jasper Snoek, Ryan Prescott Adams


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Gaussian Process Kernels for Pattern Discovery and Extrapolation


Dec 31, 2013
Andrew Gordon Wilson, Ryan Prescott Adams

* International Conference on Machine Learning (ICML), JMLR W&CP 28(3):1067-1075, 2013 
* 10 pages, 5 figures, 1 table. Minor edits and titled changed from "Gaussian Process Covariance Kernels for Pattern Discovery and Extrapolation" to "Gaussian Process Kernels for Pattern Discovery and Extrapolation". Appears at the International Conference on Machine Learning (ICML), JMLR W&CP 28(3):1067-1075, 2013 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

High-Dimensional Probability Estimation with Deep Density Models


Feb 20, 2013
Oren Rippel, Ryan Prescott Adams

* 12 pages, 4 figures, 1 table. Submitted for publication 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Fast Exact Inference for Recursive Cardinality Models


Oct 16, 2012
Daniel Tarlow, Kevin Swersky, Richard S. Zemel, Ryan Prescott Adams, Brendan J. Frey

* Appears in Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial Intelligence (UAI2012) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

On Nonparametric Guidance for Learning Autoencoder Representations


Oct 26, 2011
Jasper Snoek, Ryan Prescott Adams, Hugo Larochelle

* 9 pages, 12 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Ranking via Sinkhorn Propagation


Jun 14, 2011
Ryan Prescott Adams, Richard S. Zemel

* Submitted 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Slice sampling covariance hyperparameters of latent Gaussian models


Oct 28, 2010
Iain Murray, Ryan Prescott Adams

* 9 pages, 4 figures, 4 algorithms. Minor corrections to previous version. This version to appear in Advances in Neural Information Processing Systems (NIPS) 23, 2010 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning the Structure of Deep Sparse Graphical Models


Aug 19, 2010
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghahramani

* 20 pages, 6 figures, AISTATS 2010, Revised 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Tree-Structured Stick Breaking Processes for Hierarchical Data


Jun 05, 2010
Ryan Prescott Adams, Zoubin Ghahramani, Michael I. Jordan

* 16 pages, 5 figures, submitted 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>