Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Iain Murray

Lossless compression with state space models using bits back coding


Mar 19, 2021
James Townsend, Iain Murray


  Access Paper or Ask Questions

Density Deconvolution with Normalizing Flows


Jul 13, 2020
Tim Dockhorn, James A. Ritchie, Yaoliang Yu, Iain Murray

* Appearing at the second workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (ICML 2020), Virtual Conference. 8 pages, 6 figures, 5 tables 

  Access Paper or Ask Questions

Diverse Ensembles Improve Calibration


Jul 08, 2020
Asa Cooper Stickland, Iain Murray

* Presented at the ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning 

  Access Paper or Ask Questions

Ordering Dimensions with Nested Dropout Normalizing Flows


Jun 15, 2020
Artur Bekasov, Iain Murray


  Access Paper or Ask Questions

On Contrastive Learning for Likelihood-free Inference


Feb 10, 2020
Conor Durkan, Iain Murray, George Papamakarios


  Access Paper or Ask Questions

Scalable Extreme Deconvolution


Nov 26, 2019
James A. Ritchie, Iain Murray

* Appearing at the Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada 

  Access Paper or Ask Questions

CloudLSTM: A Recurrent Neural Model for Spatiotemporal Point-cloud Stream Forecasting


Jul 29, 2019
Chaoyun Zhang, Marco Fiore, Iain Murray, Paul Patras


  Access Paper or Ask Questions

Neural Spline Flows


Jun 10, 2019
Conor Durkan, Artur Bekasov, Iain Murray, George Papamakarios


  Access Paper or Ask Questions

Cubic-Spline Flows


Jun 05, 2019
Conor Durkan, Artur Bekasov, Iain Murray, George Papamakarios

* Appeared at the 1st Workshop on Invertible Neural Networks and Normalizing Flows at ICML 2019 

  Access Paper or Ask Questions

Dynamic Evaluation of Transformer Language Models


Apr 17, 2019
Ben Krause, Emmanuel Kahembwe, Iain Murray, Steve Renals


  Access Paper or Ask Questions

BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning


Feb 07, 2019
Asa Cooper Stickland, Iain Murray


  Access Paper or Ask Questions

Bayesian Adversarial Spheres: Bayesian Inference and Adversarial Examples in a Noiseless Setting


Nov 29, 2018
Artur Bekasov, Iain Murray

* To appear in the third workshop on Bayesian Deep Learning (NeurIPS 2018), Montreal, Canada 

  Access Paper or Ask Questions

Sequential Neural Methods for Likelihood-free Inference


Nov 21, 2018
Conor Durkan, George Papamakarios, Iain Murray


  Access Paper or Ask Questions

Mode Normalization


Oct 12, 2018
Lucas Deecke, Iain Murray, Hakan Bilen


  Access Paper or Ask Questions

Model Criticism in Latent Space


Jul 02, 2018
Sohan Seth, Iain Murray, Christopher K. I. Williams


  Access Paper or Ask Questions

Masked Autoregressive Flow for Density Estimation


Jun 14, 2018
George Papamakarios, Theo Pavlakou, Iain Murray

* section 4.3 is corrected since the previous version 

  Access Paper or Ask Questions

Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows


May 18, 2018
George Papamakarios, David C. Sterratt, Iain Murray


  Access Paper or Ask Questions

Fast $ε$-free Inference of Simulation Models with Bayesian Conditional Density Estimation


Apr 02, 2018
George Papamakarios, Iain Murray

* Appeared at NIPS 2016. Fixed typo in Eq (37) 

  Access Paper or Ask Questions

Dynamic Evaluation of Neural Sequence Models


Oct 25, 2017
Ben Krause, Emmanuel Kahembwe, Iain Murray, Steve Renals


  Access Paper or Ask Questions

Multiplicative LSTM for sequence modelling


Oct 12, 2017
Ben Krause, Liang Lu, Iain Murray, Steve Renals


  Access Paper or Ask Questions

Markov Chain Truncation for Doubly-Intractable Inference


Mar 11, 2017
Colin Wei, Iain Murray


  Access Paper or Ask Questions

Neural Autoregressive Distribution Estimation


May 27, 2016
Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, Hugo Larochelle


  Access Paper or Ask Questions

MADE: Masked Autoencoder for Distribution Estimation


Jun 05, 2015
Mathieu Germain, Karol Gregor, Iain Murray, Hugo Larochelle

* Proceedings of the 32nd International Conference on Machine Learning, JMLR W&CP 37:881-889, 2015 
* 9 pages and 1 page of supplementary material. Updated to match published version 

  Access Paper or Ask Questions

Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Processes


Aug 09, 2014
Ryan Prescott Adams, George E. Dahl, Iain Murray

* Appears in Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI2010) 

  Access Paper or Ask Questions

Parallel MCMC with Generalized Elliptical Slice Sampling


Jul 24, 2014
Robert Nishihara, Iain Murray, Ryan P. Adams

* Journal of Machine Learning Research 15:2087-2112, 2014 
* 19 pages, 8 figures, 3 algorithms 

  Access Paper or Ask Questions

A Deep and Tractable Density Estimator


Jan 11, 2014
Benigno Uria, Iain Murray, Hugo Larochelle

* 9 pages, 4 tables, 1 algorithm, 5 figures. To appear ICML 2014, JMLR W&CP volume 32 

  Access Paper or Ask Questions

RNADE: The real-valued neural autoregressive density-estimator


Jan 09, 2014
Benigno Uria, Iain Murray, Hugo Larochelle

* Advances in Neural Information Processing Systems 26:2175-2183, 2013 
* 12 pages, 3 figures, 3 tables, 2 algorithms. Merges the published paper and supplementary material into one document 

  Access Paper or Ask Questions

A Framework for Evaluating Approximation Methods for Gaussian Process Regression


Nov 05, 2012
Krzysztof Chalupka, Christopher K. I. Williams, Iain Murray

* 19 pages, 4 figures 

  Access Paper or Ask Questions