Abstract:Domain-specific knowledge graphs (DKGs) often lack coverage compared to general knowledge graphs (GKGs). To address this, we introduce Domain-specific Knowledge Graph Fusion (DKGF), a novel task that enriches DKGs by integrating relevant facts from GKGs. DKGF faces two key challenges: high ambiguity in domain relevance and misalignment in knowledge granularity across graphs. We propose ExeFuse, a simple yet effective Fact-as-Program paradigm. It treats each GKG fact as a latent semantic program, maps abstract relations to granularity-aware operators, and verifies domain relevance via program executability on the target DKG. This unified probabilistic framework jointly resolves relevance and granularity issues. We construct two benchmarks, DKGF(W-I) and DKGF(Y-I), with 21 evaluation configurations. Extensive experiments validate the task's importance and our model's effectiveness, providing the first standardized testbed for DKGF.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, temporal reasoning, particularly under complex temporal constraints, remains a major challenge. To this end, existing approaches have explored symbolic methods, which encode temporal structure explicitly, and reflective mechanisms, which revise reasoning errors through multi-step inference. Nonetheless, symbolic approaches often underutilize the reasoning capabilities of LLMs, while reflective methods typically lack structured temporal representations, which can result in inconsistent or hallucinated reasoning. As a result, even when the correct temporal context is available, LLMs may still misinterpret or misapply time-related information, leading to incomplete or inaccurate answers. To address these limitations, in this work, we propose Neuro-Symbolic Temporal Reasoning (NeSTR), a novel framework that integrates structured symbolic representations with hybrid reflective reasoning to enhance the temporal sensitivity of LLM inference. NeSTR preserves explicit temporal relations through symbolic encoding, enforces logical consistency via verification, and corrects flawed inferences using abductive reflection. Extensive experiments on diverse temporal question answering benchmarks demonstrate that NeSTR achieves superior zero-shot performance and consistently improves temporal reasoning without any fine-tuning, showcasing the advantage of neuro-symbolic integration in enhancing temporal understanding in large language models.




Abstract:Flocking is a very challenging problem in a multi-agent system; traditional flocking methods also require complete knowledge of the environment and a precise model for control. In this paper, we propose Evolutionary Multi-Agent Reinforcement Learning (EMARL) in flocking tasks, a hybrid algorithm that combines cooperation and competition with little prior knowledge. As for cooperation, we design the agents' reward for flocking tasks according to the boids model. While for competition, agents with high fitness are designed as senior agents, and those with low fitness are designed as junior, letting junior agents inherit the parameters of senior agents stochastically. To intensify competition, we also design an evolutionary selection mechanism that shows effectiveness on credit assignment in flocking tasks. Experimental results in a range of challenging and self-contrast benchmarks demonstrate that EMARL significantly outperforms the full competition or cooperation methods.