Abstract:Building general-purpose intelligent robots has long been a fundamental goal of robotics. A promising approach is to mirror the evolutionary trajectory of humans: learning through continuous interaction with the environment, with early progress driven by the imitation of human behaviors. Achieving this goal presents three core challenges: (1) designing safe robotic hardware with human-level physical capabilities; (2) developing an intuitive and scalable whole-body teleoperation interface for data collection; and (3) creating algorithms capable of learning whole-body visuomotor policies from human demonstrations. To address these challenges in a unified framework, we propose Astribot Suite, a robot learning suite for whole-body manipulation aimed at general daily tasks across diverse environments. We demonstrate the effectiveness of our system on a wide range of activities that require whole-body coordination, extensive reachability, human-level dexterity, and agility. Our results show that Astribot's cohesive integration of embodiment, teleoperation interface, and learning pipeline marks a significant step towards real-world, general-purpose whole-body robotic manipulation, laying the groundwork for the next generation of intelligent robots.
Abstract:The paper studies a fundamental federated learning (FL) problem involving multiple clients with heterogeneous constrained resources. Compared with the numerous training parameters, the computing and communication resources of clients are insufficient for fast local training and real-time knowledge sharing. Besides, training on clients with heterogeneous resources may result in the straggler problem. To address these issues, we propose Fed-RAA: a Resource-Adaptive Asynchronous Federated learning algorithm. Different from vanilla FL methods, where all parameters are trained by each participating client regardless of resource diversity, Fed-RAA adaptively allocates fragments of the global model to clients based on their computing and communication capabilities. Each client then individually trains its assigned model fragment and asynchronously uploads the updated result. Theoretical analysis confirms the convergence of our approach. Additionally, we design an online greedy-based algorithm for fragment allocation in Fed-RAA, achieving fairness comparable to an offline strategy. We present numerical results on MNIST, CIFAR-10, and CIFAR-100, along with necessary comparisons and ablation studies, demonstrating the advantages of our work. To the best of our knowledge, this paper represents the first resource-adaptive asynchronous method for fragment-based FL with guaranteed theoretical convergence.