Abstract:Building general-purpose intelligent robots has long been a fundamental goal of robotics. A promising approach is to mirror the evolutionary trajectory of humans: learning through continuous interaction with the environment, with early progress driven by the imitation of human behaviors. Achieving this goal presents three core challenges: (1) designing safe robotic hardware with human-level physical capabilities; (2) developing an intuitive and scalable whole-body teleoperation interface for data collection; and (3) creating algorithms capable of learning whole-body visuomotor policies from human demonstrations. To address these challenges in a unified framework, we propose Astribot Suite, a robot learning suite for whole-body manipulation aimed at general daily tasks across diverse environments. We demonstrate the effectiveness of our system on a wide range of activities that require whole-body coordination, extensive reachability, human-level dexterity, and agility. Our results show that Astribot's cohesive integration of embodiment, teleoperation interface, and learning pipeline marks a significant step towards real-world, general-purpose whole-body robotic manipulation, laying the groundwork for the next generation of intelligent robots.
Abstract:The nanoscale resolution of super-resolution microscopy has now enabled the use of fluorescent based molecular localization tools to study whole cell structural biology. Machine learning based analysis of super-resolution data offers tremendous potential for discovery of new biology, that by definition is not known and lacks ground truth. Herein, we describe the application of weakly supervised learning paradigms to super-resolution microscopy and its potential to enable the accelerated exploration of the molecular architecture of subcellular macromolecules and organelles.