Abstract:This paper proposes a set of simple adaptations to transform standard message-passing Graph Neural Networks (GNN) into provably powerful directed multigraph neural networks. The adaptations include multigraph port numbering, ego IDs, and reverse message passing. We prove that the combination of these theoretically enables the detection of any directed subgraph pattern. To validate the effectiveness of our proposed adaptations in practice, we conduct experiments on synthetic subgraph detection tasks, which demonstrate outstanding performance with almost perfect results. Moreover, we apply our proposed adaptations to two financial crime analysis tasks. We observe dramatic improvements in detecting money laundering transactions, improving the minority-class F1 score of a standard message-passing GNN by up to 45%, and clearly outperforming tree-based and GNN baselines. Similarly impressive results are observed on a real-world phishing detection dataset, boosting a standard GNN's F1 score by over 15% and outperforming all baselines.
Abstract:We conduct a preliminary inquiry into the ability of generative transformer models to deductively reason from premises provided. We observe notable differences in the performance of models coming from different training setups and find that the deductive reasoning ability increases with scale. Further, we discover that the performance generally does not decrease with the length of the deductive chain needed to reach the conclusion, with the exception of OpenAI GPT-3 and GPT-3.5 models. Our study considers a wide variety of transformer-decoder models, ranging from 117 million to 175 billion parameters in size.
Abstract:This paper presents a plug-and-play approach for translation with terminology constraints. Terminology constraints are an important aspect of many modern translation pipelines. In both specialized domains and newly emerging domains (such as the COVID-19 pandemic), accurate translation of technical terms is crucial. Recent approaches often train models to copy terminologies from the input into the output sentence by feeding the target terminology along with the input. But this requires expensive training whenever the underlying language model is changed or the system should specialize to a new domain. We propose Cascade Beam Search, a plug-and-play terminology-forcing approach that requires no training. Cascade Beam Search has two parts: 1) logit manipulation to increase the probability of target terminologies and 2) a cascading beam setup based on grid beam search, where beams are grouped by the number of terminologies they contain. We evaluate the performance of our approach by competing against the top submissions of the WMT21 terminology translation task. Our plug-and-play approach performs on par with the winning submissions without using a domain-specific language model and with no additional training.
Abstract:We provide a novel approach to construct generative models for graphs. Instead of using the traditional probabilistic models or deep generative models, we propose to instead find an algorithm that generates the data. We achieve this using evolutionary search and a powerful fitness function, implemented by a randomly initialized graph neural network. This brings certain advantages over current deep generative models, for instance, a higher potential for out-of-training-distribution generalization and direct interpretability, as the final graph generative process is expressed as a Python function. We show that this approach can be competitive with deep generative models and under some circumstances can even find the true graph generative process, and as such perfectly generalize.
Abstract:While Artificial Intelligence (AI) models have achieved human or even superhuman performance in narrowly defined applications, they still struggle to show signs of broader and more flexible intelligence. The Abstraction and Reasoning Corpus (ARC), introduced by Fran\c{c}ois Chollet, aims to assess how close AI systems are to human-like cognitive abilities. Most current approaches rely on carefully handcrafted domain-specific languages (DSLs), which are used to brute-force solutions to the tasks present in ARC. In this work, we propose a general framework for solving ARC based on natural language descriptions of the tasks. While not yet beating state-of-the-art DSL models on ARC, we demonstrate the immense potential of our approach hinted at by the ability to solve previously unsolved tasks.
Abstract:The use of well-disentangled representations offers many advantages for downstream tasks, e.g. an increased sample efficiency, or better interpretability. However, the quality of disentangled interpretations is often highly dependent on the choice of dataset-specific hyperparameters, in particular the regularization strength. To address this issue, we introduce DAVA, a novel training procedure for variational auto-encoders. DAVA completely alleviates the problem of hyperparameter selection. We compare DAVA to models with optimal hyperparameters. Without any hyperparameter tuning, DAVA is competitive on a diverse range of commonly used datasets. Underlying DAVA, we discover a necessary condition for unsupervised disentanglement, which we call PIPE. We demonstrate the ability of PIPE to positively predict the performance of downstream models in abstract reasoning. We also thoroughly investigate correlations with existing supervised and unsupervised metrics. The code is available at https://github.com/besterma/dava.
Abstract:In this study, we validate the findings of previously published papers, showing the feasibility of an Electroencephalography (EEG) based gaze estimation. Moreover, we extend previous research by demonstrating that with only a slight drop in model performance, we can significantly reduce the number of electrodes, indicating that a high-density, expensive EEG cap is not necessary for the purposes of EEG-based eye tracking. Using data-driven approaches, we establish which electrode clusters impact gaze estimation and how the different types of EEG data preprocessing affect the models' performance. Finally, we also inspect which recorded frequencies are most important for the defined tasks.
Abstract:Federated Reinforcement Learning (FedRL) encourages distributed agents to learn collectively from each other's experience to improve their performance without exchanging their raw trajectories. The existing work on FedRL assumes that all participating agents are homogeneous, which requires all agents to share the same policy parameterization (e.g., network architectures and training configurations). However, in real-world applications, agents are often in disagreement about the architecture and the parameters, possibly also because of disparate computational budgets. Because homogeneity is not given in practice, we introduce the problem setting of Federated Reinforcement Learning with Heterogeneous And bLack-box agEnts (FedRL-HALE). We present the unique challenges this new setting poses and propose the Federated Heterogeneous Q-Learning (FedHQL) algorithm that principally addresses these challenges. We empirically demonstrate the efficacy of FedHQL in boosting the sample efficiency of heterogeneous agents with distinct policy parameterization using standard RL tasks.
Abstract:Classical graph algorithms work well for combinatorial problems that can be thoroughly formalized and abstracted. Once the algorithm is derived, it generalizes to instances of any size. However, developing an algorithm that handles complex structures and interactions in the real world can be challenging. Rather than specifying the algorithm, we can try to learn it from the graph-structured data. Graph Neural Networks (GNNs) are inherently capable of working on graph structures; however, they struggle to generalize well, and learning on larger instances is challenging. In order to scale, we focus on a recurrent architecture design that can learn simple graph problems end to end on smaller graphs and then extrapolate to larger instances. As our main contribution, we identify three essential techniques for recurrent GNNs to scale. By using (i) skip connections, (ii) state regularization, and (iii) edge convolutions, we can guide GNNs toward extrapolation. This allows us to train on small graphs and apply the same model to much larger graphs during inference. Moreover, we empirically validate the extrapolation capabilities of our GNNs on algorithmic datasets.
Abstract:While rigid origami has shown potential in a large diversity of engineering applications, current rigid origami crease pattern designs mostly rely on known tessellations. This leaves a potential gap in performance as the space of rigidly foldable crease patterns is far larger than these tessellations would suggest. In this work, we build upon the recently developed principle of three units method to formulate rigid origami design as a discrete optimization problem. Our implementation allows for a simple definition of diverse objectives and thereby expands the potential of rigid origami further to optimized, application-specific crease patterns. We benchmark a diverse set of search methods in several shape approximation tasks to validate our model and showcase the flexibility of our formulation through four illustrative case studies. Results show that using our proposed problem formulation one can successfully approximate a variety of target shapes. Moreover, by specifying custom reward functions, we can find patterns, which result in novel, foldable designs for everyday objects.