Alert button
Picture for Robert Gray

Robert Gray

Alert button

Patch-CNN: Training data-efficient deep learning for high-fidelity diffusion tensor estimation from minimal diffusion protocols

Add code
Bookmark button
Alert button
Jul 03, 2023
Tobias Goodwin-Allcock, Ting Gong, Robert Gray, Parashkev Nachev, Hui Zhang

Figure 1 for Patch-CNN: Training data-efficient deep learning for high-fidelity diffusion tensor estimation from minimal diffusion protocols
Figure 2 for Patch-CNN: Training data-efficient deep learning for high-fidelity diffusion tensor estimation from minimal diffusion protocols
Figure 3 for Patch-CNN: Training data-efficient deep learning for high-fidelity diffusion tensor estimation from minimal diffusion protocols
Figure 4 for Patch-CNN: Training data-efficient deep learning for high-fidelity diffusion tensor estimation from minimal diffusion protocols
Viaarxiv icon

Deep Variational Lesion-Deficit Mapping

Add code
Bookmark button
Alert button
May 27, 2023
Guilherme Pombo, Robert Gray, Amy P. K. Nelson, Chris Foulon, John Ashburner, Parashkev Nachev

Figure 1 for Deep Variational Lesion-Deficit Mapping
Figure 2 for Deep Variational Lesion-Deficit Mapping
Figure 3 for Deep Variational Lesion-Deficit Mapping
Figure 4 for Deep Variational Lesion-Deficit Mapping
Viaarxiv icon

How can spherical CNNs benefit ML-based diffusion MRI parameter estimation?

Add code
Bookmark button
Alert button
Jul 01, 2022
Tobias Goodwin-Allcock, Jason McEwen, Robert Gray, Parashkev Nachev, Hui Zhang

Figure 1 for How can spherical CNNs benefit ML-based diffusion MRI parameter estimation?
Figure 2 for How can spherical CNNs benefit ML-based diffusion MRI parameter estimation?
Figure 3 for How can spherical CNNs benefit ML-based diffusion MRI parameter estimation?
Figure 4 for How can spherical CNNs benefit ML-based diffusion MRI parameter estimation?
Viaarxiv icon

Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models

Add code
Bookmark button
Alert button
Jun 07, 2022
Walter H. L. Pinaya, Mark S. Graham, Robert Gray, Pedro F Da Costa, Petru-Daniel Tudosiu, Paul Wright, Yee H. Mah, Andrew D. MacKinnon, James T. Teo, Rolf Jager, David Werring, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso

Figure 1 for Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models
Figure 2 for Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models
Figure 3 for Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models
Figure 4 for Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models
Viaarxiv icon

Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models

Add code
Bookmark button
Alert button
Nov 29, 2021
Guilherme Pombo, Robert Gray, Jorge Cardoso, Sebastien Ourselin, Geraint Rees, John Ashburner, Parashkev Nachev

Figure 1 for Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models
Figure 2 for Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models
Figure 3 for Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models
Figure 4 for Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models
Viaarxiv icon

Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion

Add code
Bookmark button
Alert button
Nov 29, 2021
Anthony Bourached, Robert Gray, Ryan-Rhys Griffiths, Ashwani Jha, Parashkev Nachev

Figure 1 for Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion
Figure 2 for Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion
Figure 3 for Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion
Figure 4 for Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion
Viaarxiv icon

An artificial intelligence natural language processing pipeline for information extraction in neuroradiology

Add code
Bookmark button
Alert button
Jul 21, 2021
Henry Watkins, Robert Gray, Ashwani Jha, Parashkev Nachev

Figure 1 for An artificial intelligence natural language processing pipeline for information extraction in neuroradiology
Figure 2 for An artificial intelligence natural language processing pipeline for information extraction in neuroradiology
Figure 3 for An artificial intelligence natural language processing pipeline for information extraction in neuroradiology
Figure 4 for An artificial intelligence natural language processing pipeline for information extraction in neuroradiology
Viaarxiv icon

Unsupervised Brain Anomaly Detection and Segmentation with Transformers

Add code
Bookmark button
Alert button
Feb 23, 2021
Walter Hugo Lopez Pinaya, Petru-Daniel Tudosiu, Robert Gray, Geraint Rees, Parashkev Nachev, Sebastien Ourselin, M. Jorge Cardoso

Figure 1 for Unsupervised Brain Anomaly Detection and Segmentation with Transformers
Figure 2 for Unsupervised Brain Anomaly Detection and Segmentation with Transformers
Figure 3 for Unsupervised Brain Anomaly Detection and Segmentation with Transformers
Figure 4 for Unsupervised Brain Anomaly Detection and Segmentation with Transformers
Viaarxiv icon

Generative Model-Enhanced Human Motion Prediction

Add code
Bookmark button
Alert button
Oct 05, 2020
Anthony Bourached, Ryan-Rhys Griffiths, Robert Gray, Ashwani Jha, Parashkev Nachev

Figure 1 for Generative Model-Enhanced Human Motion Prediction
Figure 2 for Generative Model-Enhanced Human Motion Prediction
Figure 3 for Generative Model-Enhanced Human Motion Prediction
Figure 4 for Generative Model-Enhanced Human Motion Prediction
Viaarxiv icon

iNNk: A Multi-Player Game to Deceive a Neural Network

Add code
Bookmark button
Alert button
Jul 17, 2020
Jennifer Villareale, Ana Acosta-Ruiz, Samuel Arcaro, Thomas Fox, Evan Freed, Robert Gray, Mathias Löwe, Panote Nuchprayoon, Aleksanteri Sladek, Rush Weigelt, Yifu Li, Sebastian Risi, Jichen Zhu

Figure 1 for iNNk: A Multi-Player Game to Deceive a Neural Network
Figure 2 for iNNk: A Multi-Player Game to Deceive a Neural Network
Viaarxiv icon