Abstract:Automating aircraft manufacturing still relies heavily on human labor due to the complexity of the assembly processes and customization requirements. One key challenge is achieving precise positioning, especially for large aircraft structures, where errors can lead to substantial maintenance costs or part rejection. Existing solutions often require costly hardware or lack flexibility. Used in aircraft by the thousands, threaded fasteners, e.g., screws, bolts, and collars, are traditionally executed by fixed-base robots and usually have problems in being deployed in the mentioned manufacturing sites. This paper emphasizes the importance of error detection and classification for efficient and safe assembly of threaded fasteners, especially aeronautical collars. Safe assembly of threaded fasteners is paramount since acquiring sufficient data for training deep learning models poses challenges due to the rarity of failure cases and imbalanced datasets. The paper addresses this by proposing techniques like class weighting and data augmentation, specifically tailored for temporal series data, to improve classification performance. Furthermore, the paper introduces a novel problem-modeling approach, emphasizing metrics relevant to collar assembly rather than solely focusing on accuracy. This tailored approach enhances the models' capability to handle the challenges of threaded fastener assembly effectively.
Abstract:Individuals with upper limb mobility impairments often require assistive technologies to perform activities of daily living. While gaze-tracking has emerged as a promising method for robotic assistance, existing solutions lack sufficient feedback mechanisms, leading to uncertainty in user intent recognition and reduced adaptability. This paper presents the MIHRAGe interface, an integrated system that combines gaze-tracking, robotic assistance, and a mixed-reality to create an immersive environment for controlling the robot using only eye movements. The system was evaluated through an experimental protocol involving four participants, assessing gaze accuracy, robotic positioning precision, and the overall success of a pick and place task. Results showed an average gaze fixation error of 1.46 cm, with individual variations ranging from 1.28 cm to 2.14 cm. The robotic arm demonstrated an average positioning error of +-1.53 cm, with discrepancies attributed to interface resolution and calibration constraints. In a pick and place task, the system achieved a success rate of 80%, highlighting its potential for improving accessibility in human-robot interaction with visual feedback to the user.
Abstract:Epilepsy is one of the most common neurological diseases, characterized by transient and unprovoked events called epileptic seizures. Electroencephalogram (EEG) is an auxiliary method used to perform both the diagnosis and the monitoring of epilepsy. Given the unexpected nature of an epileptic seizure, its prediction would improve patient care, optimizing the quality of life and the treatment of epilepsy. Predicting an epileptic seizure implies the identification of two distinct states of EEG in a patient with epilepsy: the preictal and the interictal. In this paper, we developed two deep learning models called Temporal Multi-Channel Transformer (TMC-T) and Vision Transformer (TMC-ViT), adaptations of Transformer-based architectures for multi-channel temporal signals. Moreover, we accessed the impact of choosing different preictal duration, since its length is not a consensus among experts, and also evaluated how the sample size benefits each model. Our models are compared with fully connected, convolutional, and recurrent networks. The algorithms were patient-specific trained and evaluated on raw EEG signals from the CHB-MIT database. Experimental results and statistical validation demonstrated that our TMC-ViT model surpassed the CNN architecture, state-of-the-art in seizure prediction.