Abstract:Retrieval-Augmented Generation (RAG) models are critically undermined by citation hallucinations, a deceptive failure where a model confidently cites a source that fails to support its claim. Existing work often attributes hallucination to a simple over-reliance on the model's parametric knowledge. We challenge this view and introduce FACTUM (Framework for Attesting Citation Trustworthiness via Underlying Mechanisms), a framework of four mechanistic scores measuring the distinct contributions of a model's attention and FFN pathways, and the alignment between them. Our analysis reveals two consistent signatures of correct citation: a significantly stronger contribution from the model's parametric knowledge and greater use of the attention sink for information synthesis. Crucially, we find the signature of a correct citation is not static but evolves with model scale. For example, the signature of a correct citation for the Llama-3.2-3B model is marked by higher pathway alignment, whereas for the Llama-3.1-8B model, it is characterized by lower alignment, where pathways contribute more distinct, orthogonal information. By capturing this complex, evolving signature, FACTUM outperforms state-of-the-art baselines by up to 37.5% in AUC. Our findings reframe citation hallucination as a complex, scale-dependent interplay between internal mechanisms, paving the way for more nuanced and reliable RAG systems.
Abstract:Automatically disentangling an author's style from the content of their writing is a longstanding and possibly insurmountable problem in computational linguistics. At the same time, the availability of large text corpora furnished with author labels has recently enabled learning authorship representations in a purely data-driven manner for authorship attribution, a task that ostensibly depends to a greater extent on encoding writing style than encoding content. However, success on this surrogate task does not ensure that such representations capture writing style since authorship could also be correlated with other latent variables, such as topic. In an effort to better understand the nature of the information these representations convey, and specifically to validate the hypothesis that they chiefly encode writing style, we systematically probe these representations through a series of targeted experiments. The results of these experiments suggest that representations learned for the surrogate authorship prediction task are indeed sensitive to writing style. As a consequence, authorship representations may be expected to be robust to certain kinds of data shift, such as topic drift over time. Additionally, our findings may open the door to downstream applications that require stylistic representations, such as style transfer.